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A B S T R A C T

Interactive tabletop systems are becoming popular platforms for
group activities. However, current common tabletops do not provide
capabilities to differentiate interactions among simultaneous users,
i.e. to associate a touch point with its proper owner. My thesis
proposes and explores the use of an important biometric property of
users as the basis for touch discrimination on multi-user tabletops:
Finger Orientation (FO).

In this thesis, I first collect the FO ranges of users standing in
different positions around a tabletop. Second, I implement a system
that uses FO to determine where the users are standing, and based on
that extrapolate the owner of the touch. Next, I evaluate the system
with two separate experiments, present the results, and discuss all
findings. Furthermore, I explore some enhancements with a simple
quantitative study. My results indicate that finger orientation is a
good natural biometric trait enhances multi-user recognition on
tabletops.
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Life is not a problem to be solved,
but a reality to be experienced.
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1
I N T R O D U C T I O N

Multi-touch tabletop systems (tabletops for short) provide a shared

environment for users to work together. To best support multi-user

tasks, tabletops should be able to differentiate the actions of one

user from those of another. Unfortunately, this feature is missing

in current common tabletop systems. I refer to this limitation as

touch indiscrimination, which restricts the potential extension of

multi-user tabletop applications. In a game application, for example,

responsibility falls on individuals for moving the correct pieces or

taking their turn at the right time. Awkward solutions must be found

for discriminating touches in a painting program, such as defining

explicit user territories [31, 32], or requiring gestures to delineate

every input [22].

Because tabletop systems are inherently collaborative, solutions

have been explored to make them touch-discriminate. The feature of

touch discrimination enables application designers to support inter-

actions that would not be otherwise possible. Figure 1 demonstrates

three users using a drawing application on a touch table. Each of

them can draw with a different color and a different pen thickness

without interfering with others.

Some investigations exist to solve the touch indiscrimination limi-

tation. One approach is to use an identifying device, held or worn

1
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Figure 1: Users interacting with a drawing application with one shared
color palette using touch-discriminate technique: SEE YOU SEE
ME (described later in this thesis). This form of collaborative work
would not be possible without maintaining distinct user states.

by the user, as a proxy for the actual owner of a touch point [7, 27].

Unfortunately this approach requires extensive modification to the

tabletop system and the use of peripheral accessories. Another ap-

proach is to employ both hands of a user, such as IdLenses [31].

However, this approach is either difficult for users to adapt to or lack

proper multi-user evaluations.

I have identified a number of problems with the existing tech-

niques for discriminating users’ touch point and proposed another

approach for identifying touches from different users. I define the

term Position Awareness (PA) to a system feature that associates a

touch with a user’s position and I design a new technique called

SEE ME SEE YOU that employs users’ finger orientation to achieve

PA touch. SEE ME SEE YOU allows the design of applications that

differentiate user’s touch. The rest of this thesis is structured as

follows: In Chapter 2, I discuss the work related to touch table and
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touch discrimination. I then present, in Chapter 3, a detailed prob-

lem statement, a list of design criteria of SEE ME SEE YOU, and the

implementation to extract finger orientation. Followed, in Chapter

4, with a complete evaluation of the system. In Chapter 5, I present

two enhancements of SEE ME SEE YOU and discuss a qualitative

study to collect users’ impression of the system. Finally, in Chapter

6, I provide a summary of the thesis and some directions for future

work.
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B A C K G R O U N D A N D R E L AT E D W O R K

Researchers have studied tabletop systems for many years. In this

chapter, I first go through implementations of current popular table-

tops. Second I survey existing methods to differentiate users’ touches.

Following this, I introduce researches that lead to my touch discrimi-

nation technique.

2.1 interactive tabletops

The development of interactive tabletops has gained significant inter-

est in recent years. Newman and Wellner [19] show their pioneering

work — the Digital Desk, which consists of a physical desk with a

video camera and a projector installed above. The projector projects

electronic images down onto the desk, and the camera tracks the

movements of an LED-tipped pen so that the user can use the pen

to interact with the computer. Later, Fitzmaurice et al. [9] develop

the Active Desk, a large desk with a rear-projection computer screen

underneath the surface. Next, Dietz and Leigh [7] introduce Dia-

mondTouch, which uses a capacitance based touch surface. Their

surface transmits electrical signals from the touch point through the

user to a receiver connecting with a computer. Sensetable, presented

by Patten et al. [23], rely on a different technology. They use electro-

4



2.1 interactive tabletops 5

magnetics under the table to track the positions and orientations of

multiple wireless objects on the surface. Similarly, SurfaceFusion [20]

used Radio Frequency Identification (RFID) technology to determine

the location of tagged objects.

(a) FTIR (Frustrated Total Internal Reflection)

(b) DSI (Diffuse Surface Illumination)

Figure 2: Vision-based tabletop implementation (a) FTIR; (b) DSI. Images
from [26].
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Today, one popular approach that has been widely used to imple-

ment a multi-touchable tabletop is vision-based system. Vision-based

approaches typically involve image processing to determine interac-

tions on the surface. Han [10], in 2005, showed a low-cost tabletop

implementation through Frustrated Total Internal Reflection (FTIR)

principle (figure 2a). He injects strips of LEDs around a transparent

acrylic panel’s edge and places an infrared-sensitive camera perpen-

dicular to the surface. When a user touches the surface, the light is

reflected by the finger and caught by the camera. The camera images

will be applied with a basic set of computer vision algorithms to

determine the contact point. The FTIR technology works well for

detecting touches. However, it struggles with dragging operations

because the light reflection requires a certain pressure, but when

users drag, they will apply less pressure on the surface, which causes

that the tabletop could lose track during dragging.

A similar vision-based technique is the Diffuse Illumination (DI)

system [26]. Instead of injecting the infrared lighting to the surface,

DI places it behind the projection surface. One drawback of the DI

system is infrared lighting can spread unevenly across the screen

surface. An improved version called Diffuse Surface Illumination

(DSI) [26](figure 2b) reduces this drawback. DI and DSI both suffer

the problem of false touch detection because of their high sensitivity,

but they are able to provide features such as detecting objects and

in-air operations.

Andreas [12] attempts to combine both FTIR and DI in one tabletop.

He uses two sets of infrared lights: one for FTIR and another for DI.

He also installs a special designed circuit to switch on/off different
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lights to catch one FTIR raw image and one DI raw image. He shows

that his tabletop can combine advantages from FTIR and DI to not

only improve touch detection but also offer more powerful detection,

including left or right hand, fingertip, and hand orientation detection.

A vision-based multi-touch tabletop system can be easily built and

has been widely used by many researchers due to the low cost of the

required hardware and the availability of the supported software [1].

In addition to those vision-based methods, there are some other

technologies that can be used to build a multi-touch table. Capacitive

Touch Technology ( [18, 25, 35]) overlays a capacitive touch screen

on top of an existing screen to turn it into a multitouch display;

however, this approach is not only expensive but also only supports

a limited number of simultaneous touches. Digital Vision Touch

(DViT) invented by Smart Technologies [34] makes use of the cameras

that are installed in each corner of the screen. Multiple cameras

communicate with each other through their sophisticated software to

determine the position of the touch. PixelSense [13] from Microsoft

does not rely on optical computing, instead, their technology shoots

infrad lights from the bottom layer of the screen. The lights are then

reflected by the touches and captured by the integrated sensor (see

Figure 3). A DViT smart table is costly and Microsoft Surface 2 is

not yet on the market yet (at the moment this thesis was written,

Microsoft had started accepting pre-orders).

Tabletops are popular because of their support of multiple users.

When Dietz and Leigh [7] develop DiamondTouch, they indicate

that they aim to address the problem of using multiple mice in a

collaborative environment. They describe a situation when several
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Figure 3: Layers of internals needed for PixelSense to work. (Image from
[13] © Microsoft. Reprinted by permission.)

users work on one screen and because each user is using a different

mouse, the multiple on-screen cursors is visually confusing and

make distinguishing one cursor from the other difficult. Moreover,

given mouse-based operations do not easily transfer to a tabletop,

direct touching is initially used to replace the mouse to support

multiple users working together in one computer system. However,

unlike the mouse, direct touch does not have a cursor associated

with a specific user so for the computer system to identify what

operation is performed by which user.

2.2 touch discrimination on tabletops

Touch Discrimination is a feature that can identify who is interacting

with the tabletop. Several researchers( [21, 28, 29]) have pointed

out the benefits of having touch discrimination on tabletops. For
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example, multiple users can select different tools from a shared

toolbox without interfering with each other; the application is able

to log each user’s behaviour; and each user is able to revert his or

her most recent action(s). In addition, the application can respond

differently according to the current interacting user.

2.2.1 Fixed Location

Partridge [21] refers identity awareness (IA) to be a system feature

that associates each operation with a particular actor. Diamond-

Touch [7] is one of the earliest tabletops known for its IA capabilities.

Figure 4 depicts how DiamondTouch works. It employs a pad placed

beneath a user’s seat to create a close circuit between each user and

the tabletop. As such, it identifies users based on their seat positions.

Figure 4: Configuration of DiamondTouch [7]: when a user touches the
table, the table transmits electrical signals from the touching
point through the user to the receiver (chair) connecting with
a computer. (Image from [7] © 2001 ACM, Inc. Reprinted by
permission.)
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The IA capabilities of the DiamondTouch are instrumental for

several projects, including: the UbiTable [33], where users are given

their own documents for annotation; SIDES [24], a game designed to

help children with Asperger’s syndrome to improve their social skills;

and TeamTag [17], a system that supports multiple users’ exploration

and annotation of digital photos. DiamondTouch provides a reliable

hardware solution, but does not work with common vision-based

systems. It operates best when users are seated and in a fixed position

around the tabletop.

2.2.2 Wearable Devices

Another common strategy for IA systems involves the use of some

external device that the system can easily recognize. Myer and

Schmidt [16] use uniquely identified wristbands (IdWristbands),

equipped with infrared LEDs that transmit coded light pulses, as

identifiers (Figure 5a). This approach works with vision-based touch

tables. The table’s IR camera is able to catch the LED signals emitted

from the wristband and allow the system to associate the touch with

a specific user. Similarly, Roth et al. [27] present the IR Ring, a

ring-like device that emits a distinguishable light signal, around a

user’s finger.

Marquardt et al. [15] introduce fiduciary-tagged gloves to distin-

guish one user’s hand from others (Figure 5b). They use 2×2 cm

fiduciaries and glue them to a regular glove. Each tag carries in-

formation including: an 8-bit identification, the coordinate when a

touch happens, and the orientation to the table. Their solution is not



2.2 touch discrimination on tabletops 11

Figure 5: (a) IdWristbands (Image from [16] © 2010 ACM, Inc. Reprinted
by permission.) (b) Fiduciary-tagged Gloves (Image from [15] ©
2010 ACM, Inc. Reprinted by permission.)

only inexpensive but also able to identify which part of the user’s

hand is interacting with the table.

The use of wearable devices reduces the hardware requirements

of a system such as DiamondTouch and also removes the constraint,

such as a user must be seated in a fixed location. However, these

systems share a main drawback which requires users to wear an

accessory. Using additional accessories limits the use of these systems

in certain contexts. In public settings, for example, the attachments

can potentially get lost, misplaced or may be unfit for some users.

Moreover, some users might refuse to use the accessory because of

personal hygiene.

2.2.3 Using Biometric Traits

It is possible for a tabletop to provide user discrimination without

users needing to wear accessories, but relying on biometric traits.

Fingerprints [11] is studied by Holz and Baudisch, as fingerprints

are distinct from one person to another. However, the goal of their

study is not intended to differentiate touch points and also not done



2.2 touch discrimination on tabletops 12

on a tabletop. They tend to use the extracted fingerprints to improve

touch accuracy.

(a) Holz and Baudisch’s [11] show fingerprint
outline and features move in synchrony when
dragging but remain stationary when rolling.

(b) RidgePad prototype

Figure 6: The study of using fingerprints to improve touch accuracy. (Image
from [11] © 2010 ACM, Inc. Reprinted by permission.)

In their study, Holz and Baudisch [11] show an interesting observa-

tion from their study that fingerprint outline moves when users are

interacting with the system (Figure 6a). They present algorithms that

accurately keep track of touches using fingerprints and demonstrate

a prototype device called RidgePad. Unfortunately, to my knowledge,

today there is no fingerprint scanner that can be easily integrated

with tabletops to provide touch discrimination. When sophisticated

fingerprint scanning becomes available and affordable, fingerprints

can be used as a promising biometric trait to discriminate user

touches. Until then, other solutions are necessary.

Schmidt et al. [30] explore the contours of users’ open palms to

identify users. They also present a technique called IdLenses [31],

which allows users to use their non-dominate hand to trigger a

virtual lens. The lens represents the user’s personal space (Figure 7).

Every action in the registered lens is considered to belong to the user

who triggers the lens. Their approach can be easily applied to any
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Figure 7: IdLenses [31] requires two steps: (1) the user places down the
hand to register a lens on the table; (2) the user operates inside
the registered lens and those operations are identified (this figure
is a remake from my own interpretation).

tabletop system, including vision-based tabletops. The flip side of

their technique is that users have to employ both hands to complete

even a simple IA operation like tapping.

Dohse et al. [8] identify a user’s location by tracking the user’s

hands. They augment an FTIR tabletop with an overhead camera

and use a skin color detection algorithm to track different users’

hands. However, they did not conduct any usability test with their

system. Because their system has to communicate with an additional

overhead camera, the efficiency and the accuracy of their system

remain unknown.

Dang et al. [6] develop a heuristic method based on the positions

and angles between multiple fingers to determine if a touch belongs
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to the left or right hand and extrapolate the position of its owner.

However, although they distinguish which hand or even which finger

is touching, they mainly focus on using finger orientation to enhance

gesture recognition and touch interaction on tabletops, and have not

explored associating touches with users.

Figure 8: Medusa [4] visualize the user’s body using a blue paddle, the
right arm with an orange circle, and the left arm with a purple
circle. The system projects the user’s arms with an orange and
a purple cone (for right and left arm, respectively). (Image from
[4] © 2011 ACM, Inc. Reprinted by permission.)

Finally, Annett et al. [4] present Medusa, a tabletop that can sense

users’ position (see Figure 8). They augment a Microsoft Surface

multi-touch table with 138 inexpensive IR-based proximity sensors

that are installed to the top and the side of the table. In addition,

they implement a set of unique user interactions within their table.

Despite the inspiring idea of user position sensing and the novelty

of their new interaction, they fail to associate a touch point with its

proper owner due to the limitation of the proximity sensors.
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2.3 users’ finger orientation

To explore a possible approach to achieve touch discrimination, I

have studied the use of Finger Orientation (FO). FO is referred to

the direction of the touch point on the table. Theoretically, FO is

useful for IA on tabletops because a user’s FO profile can be unique

according to where the user is standing. For example, when two

users are standing face to face around the table (Figure 9a), their

FO profile should be very distinct. The difference of the fingertip

pointing direction at the same touching point from these two users

should be nearly 180
◦. Similarly, users’ FO can be also distinguishable

when two users are standing perpendicularly (Figure 9b) since their

profile will have nearly 90
◦ difference. However, it is not quite clear

whether FO will be different enough for users standing side by side.

(a) When two users are face to face,
their FO profile should differ 180

◦.
(b) When two users are perpendicular,

their FO profile should differ 90
◦.

Figure 9: Theory of using finger orientation to differentiate user touches.
The blue and red line indicate the user’s finger pointing direction.

Wang et al. [37] present an algorithm to collect FO data from vision-

based tabletops. Their algorithm relies data from a finger landing in

an oblique method (where the fingertip is placed first, followed by a

roll to the full finger pad) to extract the major axis of a touch blob
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(see figure 10) given by the table’s computer vision software. At each

input frame the algorithm conducts a connected component analysis

to extract all finger contact regions. For each contact point, four steps

take place. First the algorithm fits the contact shape into its most

perfect elliptical shape. Second, it assesses whether the finger is in an

oblique touch state, based on the shape’s overall area and its aspect

ratio. Third, the algorithm considers the finger’s landing dynamics

to determine in which direction the finger is pointing. Finally, when

the finger’s blob stabilizes, detection ends and final orientation is

reported.

Figure 10: Left: finger blob captured by tabletop’s IR camera upon an
oblique landing and used to extract the finger orientation (Right).

Wang et al.’s [37] algorithm requires the users to touch in a motion

they call an ‘oblique touch’, where the fingertip is placed first, fol-

lowed by a roll to the finger pad. This allows extraction of both the

orientation and direction of the major axis of an ellipse defined by a

touch blob. In a lab of implementation of their algorithm, a series

of proof-of-concept studies show that the unintuitive nature of this

oblique landing constraint make FO detection unreliable without

extensive user training. Roughly 20% of trials resulted in a finger

orientation inverted by 180
◦.
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Dang and Andre [5] present another algorithm. They first extract

user hand contours from the camera’s raw images, next determine

the symmetric lines that wrap the finger contour, and finally average

the tracked points on the lines till they can derive the finger angle.

They show that their algorithm can achieve 94.87% recognition rate

when the error tolerance is +\− 10 degree. Their work is primarily

concerned with the evaluation of their algorithm and compare the

accuracy to other methods, such as naive ellipse method. In contrast,

although based on a similar approach that uses hand contour, I im-

plement a different algorithm to extract FO. Details will be described

in the next chapter.



3
S Y S T E M D E S I G N

Based on previous research, although interactive techniques on multi-

touch tabletops have been actively studied, only a few have tried to

tackle the challenges of distinguishing simultaneous touches from

multiple users. In this chapter, I describe the requirements of a

lightweight touch discrimination technique. I next classify finger

orientation as a lightweight technique. In the end, I present a simple

algorithm to extract finger orientation from a vision-based tabletop.

3.1 lightweight technique

Touch discrimination on tabletops is still an open problem. My

primary research interest is to develop a lightweight technique to

achieve user touch discrimination. A lightweight technique shall

allow users ease of use and adoption. In addition, the technique

shall enable designers to integrate it into existing systems with

minimal effort. Finally, all required software and hardware shall

be inexpensive and easy to acquire. Therefore, a lightweight touch

discrimination technique should meet the following criteria:

1. Minimal device constraints: the system should not require

users to hold or wear an external device;

18



3.1 lightweight technique 19

2. Accurate: the system should be accurate enough to not over-

burden or distract users from their primary tasks;

3. Scalable: the system should be versatile enough to handle

various configurations such as multiple simultaneous users,

users standing side-by-side, and uniform accuracy coverage

across different regions;

4. Low cost: building the tabletop should be achievable at an

affordable cost with commonly available technology; and

5. Computationally non-prohibitive: the system should work in

real-time and not suffer from excessive lag.

To facilitate the engineering of a lightweight technique, I restrict

my expectations with some additional caveats:

1. Limited input features: users benefiting from a lightweight

system may be willing to forgo certain types of multi-touch

use, such as using the full palm to interact with objects. This

would allow them to make the best use of the device’s touch

discriminating features;

2. Implicit trust: the system should be designed for users who

intentionally want touch discrimination. A lightweight system

need not prevent identity deception as this would add layers of

complication to normal use;

3. User adaptation: although a lightweight system should not

require long training periods, some knowledge about how the

system operates can contribute to improved usage and a better

user experience.
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3.2 design of see me see you

To design my vision of a lightweight technique, I first define the

term Position Awareness (PA) as a system feature that associate an

operation with a user’s standing position. The definition of PA com-

bines Partridge’s [21] definition of IA and User Proximity Sensing

from Annett et al. [4]. In a multi-user tabletop environment, users

stay relatively stationary for an interaction task or set of scenarios.

Therefore, I can safely associate an input with a specific user. Once

the user has the need to change position, other technologies (will

be discussed in section 6.1) can be introduced to trace the user’s

movement. I consider that to be beyond the scope of my research.

Next, I choose to use finger orientation in my system for four

reasons: 1) as discussed in section 2.2.3, in theory, users’ FO profile

can be distinct according to where the user is standing; 2) I can use

FO values to obtain information about users’ standing position to

enable PA detection; 3) using FO directly requires minimal training

to users and no additional device, hence it matches the design criteria

of a lightweight technique; 4) although some researchers( [6, 12, 37])

have studied finger orientation, no one has done a complete study

to evaluate the feasibility of using it for touch discrimination.

Furthermore, I choose a vision-based FTIR multi-touch table over

other technologies because vision-base tabletops are low-cost. In

addition, a vision-based tabletop allows me to perform optical pro-

cessing to extract FO easily. But one potential benefit of using FTIR

over DI is that an FTIR tabletop can avoid early touch detection

which can occur with DI systems. The main goal of my thesis is to
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evaluate whether FO is appropriate to use for touch discrimination

on tabletops. Therefore, the choice of the tabletop is less relevant

to the study if other systems can easily read the FO values in the

future.

The lightweight system SEE ME SEE YOU (SMESY), is conceived

to be a quick and easy method which differentiates user touches

on multi-touch tabletops. Although SMESY depends on accurate

determination of FO, the benefits of the technique are independent

from any particular FO detection algorithm. Once FO is accurately as-

sessed, I associate user touches with user positions using a machine

learning algorithm. I choose this method over a heuristic approach

for ease of implementation and robustness due to the ability of such

algorithms to generalize given limited training data. Although I

choose a Support Vector Machine (SVM) classifier for touch associa-

tion, the system may be implemented using any adequate classifier

of the developer’s choosing.

3.3 my finger orientation algorithm

Below I describe my FO algorithm designed specifically for vision-

based tabletop systems.

3.3.1 Table Implementation

I use a custom-built FTIR [10] tabletop (similar to Figure 2a) with

dimensions of 26 in. (length) × 20 in. (width) × 36 in. (height) (Figure
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Figure 11: Hardware Configuration of SMESY.
(1) Touch Surface (acrylic glass sheet);
(2) Projector;
(3) Mirror;
(4) PS3 Camera;
(5) Computer;
(6) IR Light Strip for FTIR; and
(7) Overhead Lamp.

11). The tabletop uses infrared LED lamps (Figure 11.6) emitting light

with a wavelength of 850 nm using a 12 volt power supply and a

Vivitek Qumi projector (Figure 11.2) with a 1280 × 800 resolution

and a brightness of 300 lumens. Because the table is not high enough,

I use a mirror (Figure 11.3) to reflect the projection to the surface

(Figure 11.1) so that the computer image can be fully displayed. The

experimental platform uses the TUIO protocol with the Community

Core Vision (CCV) tracker [1], and runs on a 1.86 GHz Core 2 Duo

PC with Windows XP (Figure 11.5). To cycle the LEDs for hand

contour extraction, I use a Phidgets 3052 SSR relay board [2]. The

table’s built-in IR camera (Figure 11.4) captures a 640 × 480 image

at a rate of 60 fps. Due to cycling the camera frames for alternate

use by the CCV server and for hand contour analysis, the resulting

frame rate is 20 fps.
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My algorithm relies on hand contours, which can be obtained with

a standard DI setup, or with FTIR, given the following modifications.

To obtain clear and complete hand contours for my evaluation, I

placed an overhead lamp (Figure 11.7) above the FTIR table. To

reduce obfuscation caused by the imbedded infrared light array, a

relay controller is introduced into the IR lighting circuit to cycle the

lights on and off. In this way I capture a precise hand silhouette

image (Figure 12a) for each cycle of the FTIR vision server.

3.3.2 Algorithm Details

The raw image is cropped around the coordinates of touch blobs

that are detected by CCV to extract the contour of the touching

hand (Figure 12a, inset). I then derive the direction of the pointing

finger from the hand contour image by examining a circular slice

of pixels that lie within a radial range from the center of the touch

blob (Figure 12c). The inner circle in yellow (Figure 12b) represents

the touch blob. My algorithm draws the outer circle, whose radius is

equal to 8 pixel plus the inner circle’s radius. Once I find the slice, I

remove everything else in the image. According to the testings, the

size of the 8-pixel radius works for both male and female hands. The

remaining contour is the one in red. A line from the center of the

remaining contour (in red) to the center of the touch blob (red line

in Figure 12c) determines the FO angle.

Similar to Dang and Andre’s [5] algorithm, I also use hand contour.

Their algorithm is more generalized to support multiple fingers;

however, their prediction rate does not seem high and they do not
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test their results in realtime. Because my goal is to evaluate if users’

finger orientation is feasible to use for touch discrimination, I develop

a different, simpler, yet accurate algorithm. Moreover, since finger

orientations differ from one finger to another, I choose to restrict

my exploration to the index finger. Although my algorithm can be

modified to detect the orientation of other fingers, I feel that this

restriction is not detrimental because research [14] has shown most

users extensively use index fingers on tabletop.

Figure 12: A silhouette of users’ hands (a) is cropped and processed to
find the contour of a touching hand. The contour is masked to
reveal the area betIen two radii (b) around the FTIR touch blob
received from the FTIR server. The finger orientation is given by
a line (shown in red) from the touch blob to the center of the
remaining area (c). A second line (in green) to the center of the
hand contour determines if it is a left or right hand.

3.3.3 Detecting Handedness

In addition to detecting FO, my algorithm can be adapted to detect

the handedness of user touches. When the line for finger orientation

is determined, a second line is derived from the hand contour extrac-

tion (green line in Figure 12c). In this case, it is from the touch blob to

the centroid of all pixels in the extracted hand mass. Assuming that

the user is pointing with their index finger, I can determine handed-
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ness with relatively high accuracy (>90%) by checking whether this

second line lies to the left or right of the first line.

Figure 13 demonstrates some samples of the raw shadow image

and the processed hand contour image. The red image shows the

extracted hand contour from the raw image. The green line connects

the touch point to the centroid of whole extracted hand. The white

line connects the touch point to the centroid of the radial pixels I

calculated. If the green line is on the right side of the white line, I

consider it as right-hand touch. If the green line is on the left side

of the white line, I consider it as a left-hand touch. Note that the

raw images captured by the camera are reversed. The samples look

like coming from the opposite hand, but those samples are correctly

labelled.

Andreas [12] presents an approach to detect left or right hand by

checking the difference of two distances: d1, the distance from the

pinky finger to the ring finger; d2, the distance from the thumb to

the index finger. If d1 is smaller than d2, the hand is detected as a

left hand (see figure 14). His method requires the hand is fully open

and he does not evaluate the accuracy of his approach.

In contrast, Benjamin et al. [36] implement a classifier using a

decision tree algorithm to detect handness with the input of blob

size, blob positions and arm orientation. Although their method,

different than mine, considers more scenarios other than just the

index-finger touches, they only obtained 80% accuracy. In my two

studies (described in the next chapter), I achieve an accuracy of

91.26% and 92.44% respectively. To support other scenarios, such as
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Figure 13: Two samples of right-hand touches (Top) and left-hand touches
(Bottom). The grey image is the shadow of the user’s hand.
The image in the white box shows the hand contour and the
indicators after processing.

open-hand touches is also possible. More details will be described in

chapter 4.

3.4 pseudo code

This section includes a few key functions that are used in SMESY.

SMESY has two parts: one is the vision server that modified from

an open source project CCV [1], which is written in C++ with open-
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Figure 14: Andreas’ [12] approach to detect handedness: if d1 is smaller
than d2, the hand is a left hand. (Image from [12] © authors.
Reprinted by permission.)

Frameworks library [3]; another is the front-end user interface (such

as the experiment and the demo applications), which is written in

C# with .NET framework 4.0.

3.4.1 Using Phidget Controller

The Phidget [2] control board is used to turn on and off the IR lights

programmatically. To obtain the best result of the raw image, I apply

a different gain value and exposure value to the PS3 camera after

turning off the IR lights. They are restored after I take the frame I

need.
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1 function GetRawImages() : PBYTES
2 {
3 TurnOffFTIR();
4 ChangeGainAndExposure();
5

6 // skip one frame for activating the setting
7 Sleep(17);
8

9 CLEyeCameraGetFrame(_cam, gainImageBuffer);
10 TurnonFTIR();
11

12 RestoreGainAndExposure();
13 Sleep(17);
14

15 return gainImageBuffer;
16 } �

3.4.2 Extract the Hand Contour

To extract the hand contour, I firstly crop a smaller image from the

raw image. The centroid of the small image is the touch point. Ac-

cording to my testing, cropping the image with a size of 120×120

pixels appears to serve a good result, since the image contains the

whole hand and the image size is not too big to decrease the system

performance. Secondly, Two input thresholds are customizable from

the modified CCV [1] interface. But the processing image has been al-

ready grayscaled, so it has only one color channel. The low_threshold

and the high_threshold specify the pixel values that likely belong to

a hand. I use the openFrameworks library to find all possible con-

tours from the processed image. If there is more than one contour, a

simple algorithm is kicked in.

It is possible that the cropped image there contains more than one

contour, for example, when another hand is close to the touching

point and parts of that hand is cropped as well. In that case, I

iterate all found contours. I render each contour in a black color to

a temporary image with the same size to the cropped image. Next,

I scan the touch blob area in the temporary image and sum up all
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black pixels. In the end, the contour with the most black pixels inside

the touch blob area will be considered as the touching hand contour.

1 // Input
2 // newBlobs: new detected touch blobs
3 // i: the processing blob’s index
4 // Output
5 // selectedContourIndex: the hand contour’s index in the contourFinder object
6 function ExtractHandContour()
7 {
8 int xpos = newBlobs->blobs[i].centroid.x;
9 int ypos = newBlobs->blobs[i].centroid.y;

10 int x = 0; int y = 0;
11

12 // secure a valid size for the cropping image
13 CalculateROI(xpos, ypos, getCamWidth(), getCamHeight(), x, y);
14 thresholdImg = CropImageWithThresholdRange(rawImage, x, y, low_threshold,

high_threshold);
15

16 int nContour = contourFinder.findContours(thresholdImg, minHandSize, maxHandSize);
17 int selectedContourIndex = 0;
18 if (nContour > 1)
19 {
20 // to determine which contour is correct, we simply check which
21 // contour that the touching blob resides in has the most pixels
22 int maxPixels = 0;
23

24 // blobs are sorted by size, the last one has the biggest size
25 for (int i = contourFinder.blobs.size() - 1; i >= 0; i--)
26 {
27 // reset a dummy image to black
28 dummyImg.set(255);
29

30 // gets the total points of this contour
31 CvPoint *points = new CvPoint[contourFinder.blobs[i].pts.size()];
32

33 // render the contour points to black
34 FillConvexPoly(dummyImg.getCvImage(), points);
35

36 // cleanup resources
37 delete []points;
38

39 // now scan the touchingBlob’s points, see how many pixels it
40 // resides in this contour
41 int pixelCounter= 0;
42

43 for (int blobIndex = 0; blobIndex<touchingBlob.pts.size(); blobIndex++)
44 {
45 int base = CalculatePixelAddress( dummyImg );
46 int touchPixel = pixels[base];
47

48 if (touchPixel == 255)
49 pixelCounter ++;
50 }
51

52 if (pixelCounter > maxPixels)
53 {
54 selectedContourIndex = i;
55 }
56 }
57 }
58 return selectedContourIndex;
59 } �
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1 // Input
2 // original: the raw image
3 // x: the cropping top location
4 // y: the cropping left location
5 // lowThreashold: the lowest pixel value
6 // highThreashold: the highest pixel value
7 // Output
8 // dest: the cropped image
9 ofxCvGrayscaleImage CropImageWithThresholdRange(ofxCvGrayscaleImage original, int x, int

y, int lowThreashold, int highThreshold)
10 {
11 int width = 120;
12 int height = 120;
13 unsigned char * pixels = original.getPixels();
14 int totalWidth = original.getWidth();
15 int subRegionLength = width * height;
16 unsigned char *subRegion = new unsigned char[subRegionLength];
17

18 for (int i = y; i < y+height; i++)
19 {
20 for(int j = x; j < x+width; j++)
21 {
22 int base = (i * totalWidth) + j;
23 int originalPixel = pixels[base];
24 if (originalPixel<lowThreashold || originalPixel > highThreshold)
25 {
26 originalPixel = 0;
27 }
28 else
29 {
30 originalPixel = 255; // set it to black
31 }
32

33 subRegion[result_pix] = originalPixel;
34 }
35 }
36

37 dest.setFromPixels(subRegion, width, height);
38 delete[] subRegion;
39

40 return dest;
41 } �

3.4.3 Derive Finger Orientation

In the first step to find the finger orientation, I draw two circles

around the touching point. The first radius of the ellipse is selected

using the larger value from the width and the height of the touching

blob’s bounding box; the second radius is the the first radius plus a

value depending on how many times this method has been called.

Next I remove all other pixels outside of the two circles. The remain-

ing should be a contour, which is considered as the centroid of the
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finger (shown in Figure 12). If such a contour cannot be found, I

increase the radius and try again. The number of attempts is limited

to 3 due to the performance concern. After that, I will just use the

centroid of the extracted hand contour (from the previous Extrac-

tHandContour method). In this case, the green line and the red line

are overlap (Figure 12), which results in handedness undetermined.

This situation could happen when the user’s finger is perpendicular

to the touch surface.

1 // Input
2 // selectedContourIndex: the hand contour’s index
3 // thresholdImg: the cropped image
4 // attempt: the number of attempts of using this method
5 // Output
6 // angle: the angle between the touching point to the finger contour centroid
7 // angle1: the angle between the touching point to the hand contour centroid
8 function DeriveFingerOrientation(int &attempt)
9 {

10 ofxCvBlob handContour = contourFinder.blobs[selectedContourIndex];
11

12 dummyImg = thresholdImg;
13

14 float radius = max(touchingBlob.boundingRect.width, touchingBlob.boundingRect.height
);

15

16 // after the following 3 operations, dummyImg has only the yellow ring
17 DrawFirstCircle(dummyImg, radius);
18 DrawSecondCircle(dummyImg, radius + 5 * attempt);
19 RemovePixelsOutOfTwoCircles(dummyImg);
20

21 ofxCvContourFinder centerContourFinder;
22 int nContour = centerContourFinder.findContours(dummyImg);
23 if (nContour > 0)
24 {
25 if (attempt >= 3)
26 {
27 // this method uses the centroid of the extracted hand contour
28 angle = angle1 = AngleBetween(handContour.centroid, touchingBlob.centroid);
29 }
30 else
31 {
32 fingerContour = contourFinder.blobs[0];
33

34 // two angles are detected, so handedness can be properly checked later
35 angle = AngleBetween(fingerContour.centroid, touchingBlob.centroid);
36 angle1 = AngleBetween(handContour.centroid, touchingBlob.centroid);
37 }
38 }
39 } �



4
E M P I R I C A L VA L I D AT I O N

In this chapter, I describe in details the evaluation of finger ori-

entation for touch discrimination. Three studies were conducted,

including an exploratory study, a multi-user study with a simple tap-

ping task, and a third multi-user study with a set of more complex

tasks.

4.1 exploratory study: is fo distinct enough?

This exploratory study investigates the distribution of ‘natural’ index

finger placements across a tabletop and allow me to contrast the

profiles of various standing positions around the table. Natural finger

placement is referred to users’ own finger touch postures without

having any knowledge of how the system works. My goal is to

discover if natural FO patterns are distinctive enough to be useful

as a feature for user touch discrimination. I use the collected data

as training samples for an SVM classifier to determine the potential

accuracy rate for predicting user positions.

32
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4.1.1 Data Collection

I collected finger orientation data for various user positions from

one participant at a time. The tabletop was divided into an 8×8 grid,

with each cell measuring 9.1×6.2 cm. The only instruction to the

participants was to select targets, when they appeared, with users’

right hand index finger. The targets were rectangular, measured

3.4×2.9 cm, and were placed at the center of a randomly selected

grid cell. In the background I ran the FO algorithm and stored

each orientation. When a target was hit, the color of the target was

changed from red to green. I did not provide any additional visual

feedback to indicate if the participant’s finger orientation was correct

or not.

Figure 15: (a): Three Participants in an experiment around my custom-
built FTIR tabletop; (b): dimensions of my system and the three
positions for which I collected data to train my prototype system.

Participants selected a target in each cell, over two repetitions of all

cells, while standing in each of three positions around the tabletop,

LEFT, RIGHT, or SIDE (Figure 15b). I only collected data from these

three positions, as all other major positions around the tabletop could

be extrapolated from these (discussed in section 4.1.2). I collected
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data from 8 participants × 3 positions × 64 target locations × 2

repetitions = 3072 trials. Each set of trials took approximately 45

minutes to complete.

Figure 16 shows the range of FO values for each cell in the grid.

Each triangle represents the full range of finger orientations collected

for the corresponding cell. The long midline depicts the mean value

and the short line perpendicular to the midline shows one standard

deviation from the mean. Following are some notable observations:

Figure 16: FO ranges across tabletop, with mean and standard deviation
(Green: LEFT; Yellow: RIGHT; Red: SIDE). Two example cells are
enlarged to show the distinct ranges.
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• Finger Orientation Ranges: Surprisingly, over 80% of all cells

exhibit very narrow standard deviations. In about 90% (58/64

cells) of cases, the mean angles fall approximately in the middle

of the detected angle range. Cells in front of the user tend to

have narrower ranges than those that are off to either side.

• Range overlap: The ranges exhibit very little overlap. The LEFT

and RIGHT (green and yellow, respectively) positions are nearly

shoulder-to-shoulder, likely a worst case scenario. Despite this

very close proximity, finger orientation ranges are distinct in

over 95% of cells for side-by-side positions and in all cells for or-

thogonal positions (i.e. SIDE vs. LEFT or RIGHT). The standard

deviations of the ranges do not overlap in any situation.

• Zones: Overlap between ranges appears to be greater in regions

of the table that are either further away from pairs of users. Thus

for objects directly in front of a user, their finger orientation is

more distinct than in shared territories further away. I consider

this factor in my evaluation.

These findings stem from participants using only their right hand.

A mixture of both left and right hands would inevitably show more

variability. Since my FO algorithm can also detect handedness, I can

first identify the handedness of a touch and then use the correct

(left or right) profile to determine position. Therefore, I recruited the

same group of participants and asked them to redo the tasks with

their left hand index finger. Figure 17 depicts the results of the FO

ranges for left hand.
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Figure 17: FO ranges from left hand index finger across tabletop, with
mean and standard deviation (Green: LEFT; Yellow: RIGHT; Red:
SIDE).

4.1.2 Training Machine

I classify FO patterns by user position using a multi-class support

vector machine (SVM). SVM is a machine learning classifier that

uses a set of training samples to create a mathematical function, or

model, that can predict the correct category, or label, of an previously

uncategorized item. I choose SVM because of its widespread reported

success in a variety of problems. I used Chang and Lin’s libSVM [2].

Training

To train the SVM, I collected user input data to create a set of labeled

feature vectors (arrays of input values). My feature vector contains
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the x-y coordinates of a touch and the corresponding FO angle, θ. For

simplicity, I discretized the input space of the tabletop into 64 cells.

The label of a feature vector is an integer representing the user’s

position around the table. Before training, I find the combination

of required SVM parameters that give the highest cross-validation

score. Since data were collected from both left and right hand index

finger, I constructed two sets of training machines. One set is for the

right hand index finger touch, another set is for the left hand index

finger touch.

My model is user-independent, meaning that the training set in-

cludes data from multiple users and generalizes sufficiently to allow

recognition of new users. User-independent systems are generally

considered to be more difficult to implement than user-dependant

systems, which are trained specifically to recognize one individual

user. Even though I only collected data from three positions (LEFT,

RIGHT, and SIDE, see Figure 15b), I can easily convert those three

positions to other positions (see section 4.1.2).

Predicting a Touch’s Owner

I used the SVM model to discriminate user touches when the tabletop

camera sees a touch point. To trigger a prediction, I construct an

unlabeled feature vector for a detected touch, consisting of the x-y

coordinates of the finger and its orientation, θ. When the feature

vector is fed into the SVM, it returns the value of the predicted user

position. The first prediction is triggered when the touch happens. By

doing so, the system is immediately aware of the owner of the touch.

Once a touch is associated with an owner, no SVM prediction will
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be triggered again. However, the touch’s FO values will be updated

every 50 frames (The camera runs 60 frames per second, so each

50-frame update is roughly 800 milliseconds). This approach can

avoid running too many image process operations to overkill the

system while still accurately keeping track of the touch’s FO changes.

A predictive model is referred to a classifier that supports N classes,

where a class is a user standing position. To simplify the problem,

I start with a 3-class model, which classifies the three positions

shown in Figure 15b. However, I can use data collected from a few

positions to extrapolate to others, and combine them into various

configurations (see section 4.2, below). Given the assumption that

user pointing profiles are invariant to position, it is possible to take

an alternative approach that generalizes to any possible user position,

for example a user standing at a corner. Likewise, the inclusion of

multiple fingers from a single hand is likely possible. Extensions to

dynamic hand configurations and those involving more than 3 users

are left for future work.

Profile Conversion

The tabletop I use can support up to six users working together.

The full configuration is shown in Figure 18. As mentioned earlier,

I collected data from only user 1, 2, and 3. For the remaining three

positions, I follow this conversion logic: 3 → 4, 1 → 6, and 2 → 5.

For example, when converting to position 4, I first create a set of new

feature vector using the data of each cell from position 3, then change

the finger orientation and match the cell from position 4’s perspective,

and finally update the label. It is important to correctly map one cell
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Figure 18: The table can support up to six users. User 3’s cell (in red
rectangle) is mapped as User 4’s cell (in red ellipse)

to a different position’s perspective. For instance, in Figure 18, from

position 3’s perspective, the cell in red rectangle should be mapped

to the cell in red ellipse from position 4’s perspective.

The following code snippet shows how to convert one position

to another position. Each training data entity represents a feature

vector, which includes target’s location, finger orientation, and the

user standing location (class label).
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1 TrainingDataEntity ConvertEastToWest(TrainingDataEntity eastEntity)
2 {
3 return new TrainingDataEntity()
4 {
5 TargetLocation = new Point(TouchTable.TableWidth - eastEntity.TargetLocation.X,

TouchTable.TableHeight - eastEntity.TargetLocation.Y),
6 FingerAngle = MathHelper.EnsureAngleIn360(eastEntity.FingerAngle - 180),
7 StandingLocation = Framework.ReferenceData.UserStandingLocation.WEST
8 };
9 }

10

11 TrainingDataEntity ConvertSouthRightToNorthLeft(TrainingDataEntity southRight)
12 {
13 return new TrainingDataEntity()
14 {
15 TargetLocation = new Point(TouchTable.TableWidth - southRight.TargetLocation.X,

TouchTable.TableHeight - southRight.TargetLocation.Y),
16 FingerAngle = MathHelper.EnsureAngleIn360(southRight.FingerAngle + 180),
17 StandingLocation = Framework.ReferenceData.UserStandingLocation.NORTH_LEFT
18 };
19 }
20

21 TrainingDataEntity ConvertSouthLeftToNorthRight(TrainingDataEntity southLeft)
22 {
23 return new TrainingDataEntity()
24 {
25 TargetLocation = new Point(TouchTable.TableWidth - southLeft.TargetLocation.X,

TouchTable.TableHeight - southLeft.TargetLocation.Y),
26 FingerAngle = MathHelper.EnsureAngleIn360(southLeft.FingerAngle + 180),
27 StandingLocation = Framework.ReferenceData.UserStandingLocation.NORTH_RIGHT
28 };
29 } �

Cross Validation

The purpose of cross validation is to determine if the model can

really work as I expect without actually running a user study. Cross

validation techniques usually involve partitioning the sample data,

constructing the SVM using one subset (training set) and validating

with another subset (testing set). I use the following two approaches

to cross validate my collected data (from eight users). In the first

approach, I iterate eight users and build an SVM with seven users’

data as the training set, then use the remaining user’s data as the

testing set. In the second approach, I construct the SVM using all

eight users’ data, randomly exclude a few records from each user,

and then use excluded data form a testing set.
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User ID Accuracy
1 96.88% 93.23% 94.01% 93.75%
2 95.05% 92.45% 92.71% 92.71%
3 97.66% 95.83% 96.09% 96.09%
4 89.06% 90.36% 91.15% 91.93%
5 93.23% 93.75% 93.49% 93.49%
6 86.98% 86.98% 88.02%
7 99.48% 99.48%
8 100.00%

Average 94.4% 92.1% 93.4% 94.4%

Table 1: Accuracy of 5-User SVM (column 2), 6-User SVM (column 3), 7-
User SVM (column 4), and 8-User SVM (column 5).

First, I use the first approach to cross validate. Table 1 shows the

accuracy of using 5, 6, 7, and 8 participants’ data in SVM. Each row

in the table represents using the user N as the testing set to evaluate

the SVM built by the remaining users. Interestingly, when using only

5 participants to build the SVM, user 4 seems to be an outlier. Adding

one more participant increases the user 4’s accuracy but lower the

overall accuracy and now user 6 becomes the new outlier. Adding

another participant (seven in total) increases the overall accuracy and

again improves the user 4’s accuracy; however, it does not affect the

user 6 at all. Finally, with eight participants, both overall accuracy

(94.4%) and user 6’s accuracy are improved. Moreover, half users’

accuracy (2, 3, 5, and 7) remain the same compared to the 7-User.

To better determine if the user 6 is really an outlier, I build a 7-User

SVM without user 6 (see table 2), which lead an increase in overall

accuracy, but only three individuals of the seven users have the

accuracy increased.
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I also use the second approach for data cross validation. Table 3

shows the results. Each row represents the accuracy of randomly

selecting 2 to 10 records from each participants to form the testing set

to evaluate the SVM built by the remaining data. The accuracy will

depend on what records are randomly selected. Nevertheless, after

running the program numerous times, the accuracy is consistently

around 96%. Combining the results from both approaches, I believe

that using eight participants to build the SVM is reasonable and the

prediction accuracy is high enough for my purpose.

Two observations can be made from the results of cross valida-

tion. First, different users have different gesture of pointing and

this provides a variety of samples in the SVM. Second, in my case,

SVM provides a better result using the second data cross validation

approach. These two observations make me believe that there is no

reason to exclude user 6 and the SVM will perform better when

using all users’ data.

User ID Accuracy
1 96.88%
2 95.05%
3 96.61%
4 90.10%
5 93.49%
7 99.22%
8 100.00%

Average 95.9%

Table 2: Accuracy of 7-User SVM Without the User 6
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Random Trials Num Accuracy
2 100.00%
3 100.00%
4 96.74%
5 96.52%
6 97.10%
7 95.65%
8 95.11%
9 96.62%
10 94.78%

Average 96.94%

Table 3: Accuracy of Cross Validation Using Approach Two;
First column means when building the SVM, I randomly exclude n
records from each participant and use those data as the testing set.

The results of the two cross validation methods show a high

accuracy of the prediction (94.4% and ≈96%). However, in a software-

based cross validation, the testing set contains only correct data.

In a real multi-user application, the system might receive a false

inaccurate data. For example, one user may try to avoid physical

contact from another user when they both operate at the same time.

The user’s finger data might not be as ‘natural’ as when operating

alone. Therefore, testing with a multi-user experiments will be the

next step.

4.1.3 Hypotheses

A multi-user scenario refers to multiple users working around a

tabletop. To better design what I want to measure from the system, I

first postulate the following hypotheses based on the observations

from the collected data:
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H1: Because of differences in range overlaps, SMESY will report

higher accuracies for configurations where users stand in op-

posite or orthogonal positions than when standing adjacent to

one another;

H2: Although training data were collected for targets at the center

of each cell, the classifier will generalize across the entire cell,

keeping accuracy high for unrestricted target positions;

H3: Since data were collected for a selection task, other tasks (such

as rotating or scaling) that require users to place their fingers

along different orientations will not be as accurate;

H4: Increased overlapping in cells that are more distant from a pair

of users will lead to lower accuracy rates in those regions.

I evaluated these four hypotheses in the following two experi-

ments.

4.2 study 2 : accuracy in a real setting

This study examined the accuracy of SMESY with a tapping task,

common on tabletops for triggering a command or object selection. I

wanted to test the robustness of my system with multiple users in a

variety of possible configurations.
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4.2.1 Participants and Procedure

Eight groups of 3 participants each, between the ages of 20 to 35,

participated in the study. Five of the 24 participants were female and

all were right-handed. None had prior experience using a tabletop

or participated in the exploratory study.

The task was identical to the pointing task used in the exploratory

study, with two exceptions. First, target positions were not restricted

to the center of a grid cell; and second, the task was performed in

groups, arranged in 1 of 4 predetermined standing configurations.

Each participant was assigned to a unique color, and their desired

target was displayed in that color. Similar to before, I asked the

participants to select the target with their right hand index finger.

Additionally, I encouraged participants to interact simultaneously.

However, I did not explain to the participants what I were testing

and how the system worked. Participants were told that I wanted to

observe how multiple users naturally interact with a touch table.

Figure 19: Left: Four configurations of standing positions relative to the
table including side-by-side, opposite and adjacent users. Right:
Targets were placed in 3 zones outlined by the same color as a
user. The zones demarcated areas based on the distance to the
right hand of each user.
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4.2.2 Design

The experiment employed a 4 × 3 factorial design. The independent

variables were Configuration and Zone:

Configuration: I chose a diversity of configurations that might ap-

pear in realistic situations. These include adjacent (side-by-side),

opposite (across the long and short dimensions of the table), and

orthogonal placements. The 4 configurations are labeled AdjOpp,

AdjOrth, OppLong and OppShort (Figure 19 left).

Zone: The findings from the exploratory study showed an increase

in range overlap as the distance from a pair of users grows. Therefore,

I also tested my algorithm’s accuracy based on the location of targets

relative to each user’s position. I defined 3 zones based on the

distance to the user’s right shoulder. The 3 zones are near (0–25cm),

middle (26–45cm) and far (45cm to the end of table) (Figure 19 right).

I presented an equal number of trials in each zone and for each

participant. The Configurations were counter-balanced to reduce any

learning effect. For each trial, a target was placed in a randomly

chosen zone. There were a total of 12 targets per user in each con-

figuration. The design can be summarized as 4 Configurations × 3

Zones × 12 Trials × 8 Groups of 3 users = 3456 trials in total.
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4.2.3 Results and Discussion

System Accuracy

The recorded data were analyzed using a repeated measures ANOVA

test. The results, summarized in figure 20, revealed an average accu-

racy of 97.86% across all the tested conditions. I found no significant

effect of Configuration (F3,21 = 0.858, p = 0.48) or Zone (F2,14 = 3.47,

p = 0.65), thus rejecting H1 and H4. In H4, I hypothesized that

SMESY’s prediction accuracy would decrease in far-away regions,

which showed more overlap between finger orientations. The results

show that this is not the case. Likewise, H1 can be rejected, since

results were not significantly affected by user placement.

Figure 20: System accuracy based on zones (left) and configurations (right).
Error bars represent 1 s.e. Scale starts at 75%, to show differences.

By Configuration, the accuracy rates were 98.5% (s.e. 0.4%) for

OppShort, 96.9% (s.e. 0.9%) for AdjOrth, 97.8% (s.e. 1%) for Ad-

jOpp and 98.1% (s.e. 0.9%) for OppLong. Notice that the accuracy

of AdjOrth was slightly, but not significantly, lower than the others

(Figure 19, 2nd from left). This was because there were more over-

laps in finger orientations when participants were standing in this

configuration.
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It shall be noted again that no participant is aware of that the

underlying goal of the tasks is to collect their finger orientation. All

participants performed the tasks (a simple tapping) in their own

natural way without being instructed. Hence, I consider the average

accuracy of 97.86% a very good result.

Handedness Detection Accuracy

Because in this study, all participants were asked to perform the tasks

with their right hand index finger, I can use the data to determine

how well the handedness detection algorithm works. The results

show 3154 out of 3456 trials (91.26%) were accurately detected as

right hand. In those 3154 trials, 98.6% were correctly predicted as the

correct user. In the 302 trials that were detected as left hand, 89.7%

were correctly predicted. Interestingly, I later fed the remaining 10.3%

(31) trials into a left-hand SVM, they were all predicted correctly as

the desired users. This result inspires me to design the next study

that allows users to touch with either hand, and the application

dynamically switches to a different training machine according to

the detected handedness (see section 4.3).

Observation in Groups

A significant effect was found in groups (F7,3455 = 5.372, p < 0.01),

which implies that different groups behaved differently. However,

no pattern was found among groups in either zone or configuration.

Figure 21 and 22 show the results of accuracy of each group in zones

and in configurations. Only three groups underperformed in the far

zone and this indicated that distance of target does not impact the
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accuracy. Five groups underperformed in the AdjOrth configuration,

which confirmed the result in Figure 20 that adjacent users would

impact the accuracy.

Figure 21: Accuracy of each group in zones.

Figure 22: Accuracy of each group in configurations.
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Inspection of Errors

In inspecting the errors from the current study, I observed that many

were caused by a failure of my finger orientation algorithm. Because

my system uses overhead lighting to produce hand contours, some

group situations can result in problematic overlapping shadows,

for example, when a user’s finger is occluded by a neighbour’s

arm. Figure 23 shows two such situations in which hand contour

extraction failed.

Figure 23: When a tap occurs (a) inside or (b) nearby the shadow of the
other user’s arm or hand, the algorithm failed to detect the
correct FO. (c) and (d) demonstrate other two similar scenarios.

To further explore why the errors occurred, I manually went

through the 74 trials, out of 3456 trials that fail to be predicted

as the correct user. Because every target belongs to a certain cell

(defined in Figure 16) and I have collected the desired FO mean

and its standard deviation. I identify a user’s FO as an outlier if the

FO value differs by twice the standard deviation or more from the
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mean. I found that 63 out of 74 trials are identified as outliers. When

looking at the recorded raw images one by one for those 63 trials,

the incorrect FOs are all caused by overlapped arms (depicted in

Figure 23). The remaining 11 trials are shown in table 4. These trials

were predicted as a incorrect user even the FO fell in a reasonable

desired range. Interestingly, 10 of them come from the configuration

that include adjacent users (AdjOrth and AdjOpp). The data shows

that configurations with adjacent users might have a higher chance

to cause the SVM to predict inaccurately, but 10 out of 1728 trials (2

Configurations× 3 Zones× 12 Trials× 8 Groups of 3 users), which is

less than 0.01, is not significant. Hence, I believe that it is promising

to use FO for touch discrimination with multiple users standing

in opposite or orthogonal positions. In addition, having only two

adjacent users on one side of the table will still work reasonably well.

However, I assume that if there are more than two adjacent users on

the same side, this technique might be less accurate.
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Config Desired User Predicted User User FO Range Mean Range S.D.
AdjOrth 1 2 125.93 103.18 14.07

AdjOrth 1 2 114.46 97.65 11.3
AdjOrth 1 2 118.04 104.4 14.68

AdjOrth 1 2 118.34 100.83 14.06

AdjOrth 2 1 105.43 125.08 10.96

AdjOrth 1 2 98.86 86.52 6.73

OppLong 4 2 90 26.41 7.34

AdjOpp 1 2 105.23 84.78 10.83

AdjOpp 1 2 109.22 97.65 11.33

AdjOpp 1 2 114.6 97.65 11.33

AdjOpp 1 2 124.51 104.4 14.68

Table 4: The FO in these 11 trials are considered as a valid angle for the
FO range at the desired target; however, they are predicted as a
different user (user labels are defined in Figure 18). This kind of
error is considered as prediction error from SVM.

4.3 study 3 : step up complexity

The previous study showed that SMESY is highly accurate across

multiple user positions and when the targets are placed across the

display, but only demonstrated this for the case of selecting objects.

Real-world applications often involve more complex tasks. For in-

stance, a user may want to rotate and scale a picture or draw on

the table. These tasks may involve using both hands or may lead

users to touch the table in a different orientation. SMESY relies solely

on users’ touch orientation. Prediction errors can result with users’

changing their touching behaviour, whether intentional or subcon-

scious. However, I hypothesized that this issue could be resolved

by educating users about how the system works so that they can
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adapt themselves to the system. I further hypothesized that such

adaptation is effortless and welcomed by the users.

4.3.1 Participants and Procedure

I recruited 9 groups of 3 participants, each between the ages of 20

and 35, for this study. All 27 participants were right handed and 2

were female. Five had participated in Study 2, but none participated

in the initial data collection study.

I tested my system using three tasks involving the manipulation

of a 7.8 × 9.8 cm (240 × 180 pixel) object:

1. Rotation with right hand (RR): Rotating an object is likely to

produce some finger orientations (on land down) that do not

coincide with what I used for training my algorithm. In this

task, participants were restricted to using their right hand only.

2. Rotation with either hand (RE): This is the same task as the one

above except that participants were allowed to use either hand

to rotate the object. This could test my algorithm accuracy of

handedness detection.

3. Scaling (S): This task requires participants to use both of their

index fingers to tap on a rectangular object, and drag in opposite

directions. This task would further test the limits of my trained

system as well as the accuracy of my handedness detection

algorithm.

In task RR, hand prediction is unnecessary and thus all inputs were

passed to only the right hand FO model, allowing me to evaluate my
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handedness detection algorithm. The RE and S tasks do not restrict

users’ hand and thus test the system under more realistic conditions.

For these tasks, I loaded a second model using left hand data. All

inputs were first evaluated for handedness and then passed to the

appropriate model for user touch discrimination.

4.3.2 Design

The experiment consisted of 2 phases. The 1st phase imitated a

walk-up-and-use scenario, where participants performed the 3 tasks

without any knowledge of how the system works. The 2nd phase

started with a short orientation session (about 5 minutes long), where

participants were informed about how the system worked. In the 2nd

phase only, participants received feedback during the 3 tasks about

whether the system correctly recognized them. A colored arrow was

shown, along with a smiley face for correct predictions, or a sad face

for incorrect ones. Participants were given practice trials until they

understood the meaning of the feedback and had learned to avoid

situations that commonly caused recognition failure, such as shadow

occlusion or extreme FO angles.

Participants were asked to stand in the AdjOrth configuration,

which produced the lowest accuracy in Study 2. In each trial, 3

targets, color-coded by user, were placed in random positions. A

small offset distance was used to ensure that targets did not overlap

with each other or appear too close to the edge of the table.

The experiment employed a 3 × 2 within-subject factorial design.

The independent variables were Task (RR, RE, and S); and Feedback



4.3 study 3: step up complexity 55

(feedback or non-feedback). Task was partially counter balanced,

however the non-feedback phase was always presented first. I al-

lowed short breaks between tasks and phases. Participants filled out

a questionnaire upon completion.

4.3.3 Results and Discussions

For all the 3 tasks, the recognition of user position was made based

on the initial touch of an object. For the scaling task, I used the FO

from whichever hand touched the object first. The resulting data

were analyzed using Repeated-Measures ANOVA and Bonferroni

corrections for pair-wise comparisons. The results revealed an aver-

age accuracy of 94.7% across all the tested conditions. ANOVA tests

yielded a significant effect of Feedback (F1,8 = 5.7, p < 0.05). There

was no significant effect of Task (F2,16 = 0.74, p = 0.49).

The system had higher accuracy in the feedback condition (96.5%,

s.e. 0.4%) than in the non-feedback condition (92.8%, s.e. 1.5%). I

found no significant learning effect during the 1st phase, suggesting

that this difference was primarily due to the following orientation

session. When broken down by task, I find accuracies of 95.8% (s.e.

0.6%), 94.4% (s.e. 1.8%), and 93.7% (s.e. 1.1%) for RR, RE and S,

respectively.

Effect of Task Complexity

Although analysis did not yield a significant effect of task complexity,

one-way ANOVA tests showed a significant difference between the

3 tasks in the non-feedback condition (F2,1941 = 4.57, p < 0.05). RR



4.3 study 3: step up complexity 56

had the highest accuracy (95.1%, s.e. 0.9%), followed by RE (92.6%,

s.e. 1%), which was higher than S (90.7%, s.e. 1.1%) (Figure 24 left).

Post-hoc analyses showed only a significant difference between RR

and S (p < 0.01).

Many of the errors in the 1st phase were a result of overlapping

shadows that interfered with FO detection (as shown in Figure 24).

Task S had the highest number of these errors because 2 hands per

user resulted in more overlapping arms. Additionally, in this task,

users would often place their hands with the index finger parallel

to an object’s edge to avoid occlusion. In addition, RR tasks in the

non-feedback condition is actually similar to the tapping tasks in

study 2. Participants had no knowledge of the system and performed

the tasks in their own natural way, but the accuracy was reduced

to 95.1% (RR in study 3) from 96.9% (AdjOrth accuracy in study 2).

As predicted, the system accuracy decreased with increasing task

complexity (between RR and S), confirming H3. I assume that the

knowledge and feedback reduced this effect in phase 2.

Effect of Feedback

In the feedback condition, system accuracy increased to 96.6% (s.e.

0.7%), 96.3% (s.e. 0.7%), and 96.6% (s.e. 0.7%) for RR, RE, and S,

respectively (Figure 24). Pairwise comparisons showed a significant

improvement over the non-feedback condition for all the tasks except

RR (p < 0.01). These results suggest that by understanding the causes

and recognizing instances of problems, such as FO detection errors,

users were able to adapt and improve their experience.
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Figure 24: System accuracy shown by task and feedback (graph starts at
50%).

Handedness Detection Accuracy

For evaluation of handedness detection, I use only trials from the

RR task, in which hand use was controlled. In this task, the right

hand was correctly determined 93.8% of the time (Figure ??). The

number is close to the accuracy of handedness prediction (91.26%)

in the study 2. Therefore, I believe it is reasonable to expect a similar

accuracy for detecting the left hand. Within the set of trials for

which handedness was correctly recognized, user positions were

also predicted correctly in 95.6% of cases. Interestingly, even when

handedness detection failed, user identification remained high at

91.3%.
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Figure 25: System accuracy for hand and user predictions. User prediction
is still high even when handedness prediction fails. (RR task
only)

Learning Among Groups

After breaking down feedback conditions with groups, I notice seven

groups have significant improvement in the with-feedback condition

(see Figure 26) and one group (group 7) performs equally in both

conditions. Only one group (group 6) have the reverse effect; how-

ever, their accuracy remained high (over 95%). Another interesting

observation is, before training, participants all have similar long stan-

dard deviation, which indicates without knowing how the system

works, users can produce very different and dramatic results. But

after users gain knowledge of the system, their standard deviation

become much shorter, which means they produce much stable and

consistent results.

Among these nine groups of participants, I observed a behaviour

change after educating about them how the system worked. Some
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Figure 26: Accuracy were improved in seven groups after training and
providing feedback in tasks.

participants tended to be more careful when interacting with the

system after knowing what they could do to mess it up. I assume that

some users might make more mistakes when they are fear of making

mistakes. This potential psychological phenomenon is beyond my

study. In spite of that, I believe the majority of users will achieve a

higher accuracy after learning how the system works. Furthermore,

for some users, their natural way of interaction can also yield a high

accuracy even without knowing how the system works.

Subjective Preference

The post-experiment questionnaire shows that users welcome SMESY

as an easy-to-use plug-in for existing tabletop applications. All scores

reported below are based on a 5-point Likert scale (5 for highest

preference).
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The participants gave an average score of 4 in support of user

feedback. Of all participants, 85% agreed that the feedback helped

them learn from mistakes, and better adapt to the system. When

asked “Did you change your finger direction after knowing how the

system worked?", they responded with an average of 3.1. They re-

ported an average of 1.8 when asked if they felt it was uncomfortable

to change their FO. In most cases, however, such a change was not

necessary; only 1 user (3.7%) gave a positive score (of 4) when asked

if the required number of corrections was excessive. Participants

also gave feedback regarding my UI design, with 78% in support of

showing the detected FO in addition to the visual feedback of the

recognition result. This motivated my design of the Position Aware

Cursor, which I describe in the following chapter.



5
E N H A N C E M E N T S A N D D I S C U S S I O N S

The results of my studies suggest that the robustness of SMESY will

allow the support some multi-user features on a common tabletops.

The results also inspire me to design two additional enhancements

to SMESY. The first allows users to move around the table and the

second allows for a fluid method of correcting prediction errors. Both

features are compatible with the lightweight requirements outlined

earlier.

5.1 user mobility

To grant users the flexibility of moving around the table, I associate

each user with a Position Avatar, shown in figure 27. Users log in to

the system by selecting a Position Avatar icon. Thereafter, the icon

indicates their position at the tabletop edge. When a user chooses

to changes positions, she can drag the Position Avatar along. In this

implementation, the onus is on the user to manually inform the

system of their movements. Although a more sophisticated device

could automatically track the user with peripheral hardware (dis-

cussed in section 6.1), I resorted to manual placement to maintain

the lightweight nature of SMESY.

61
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Figure 27: Position Avatar: A user drags her avatar (fish) to another posi-
tion and her profile, suck as selected thickness and color, are
transferred to the new location.

5.2 fluid error recovery

Error recovery is an instrumental feature of a lightweight system, as

it may not always guarantee 100% accuracy. Inspired by comments

from my participants, I designed the Position Aware Cursor (PAC,

Figure 28) to provide users with a fluid and robust solution in cases

of wrong predictions. PAC has two elements: (1) A color-coded

arrow showing the user’s touch orientation, and (2) a set of wedges

showing the possible FO ranges available, based on the locations of

other users. In this example, the angle and direction of these wedges

are based on the data collected in my exploratory study (Figure 16).

If an incorrect prediction occurs, the user can reorient her finger to

a new wedge. Figure 28 left shows that a user lands her finger and

the system displays her location. Then the user reorient her finger

(Figure 28 right) to change her position identity. I envision that such

a feature could be disabled when a user becomes acquainted with

the technique.
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Figure 28: The Position Aware Cursor. Left: a user lands her finger, and the
system predicts her location correctly. Right: the user reorient
her finger to change her position identity.

5.3 user subjective impression

In a final informal evaluation I collected subjective user feedback

with SMESY in two prototype applications: a multi-user paint appli-

cation and a mahjong solitaire game.

Three groups of 3 participants (2 females), between the ages of

21 and 30, participated in this evaluation. Before each group started

the tasks, I explained how the system works and the use of PAC.

I also let each participant try PAC for a few times and made sure

each of them understand it. However, I did not present the Position

Avatar to them. With the paint application, participants were asked

to collaborate and replicate a sample drawing. This required that

they each control certain user-specific states such as line thickness

and color. Each participant completed 1/3 of the drawing. In the

multi-user game, participants were asked to quickly find and select

two tiles with matching graphical patterns. Tiles could occlude and

overlap one another, thus requiring participants to move tiles around

the table. Users were given a score based on the number of pairs
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they matched and the game ended when all tiles were selected. I

encouraged participants to use PAC for error corrections.

I note the following observations: (1) Participants finished the

tasks relatively quickly, and were not hindered by any system fea-

tures. (2) In informal interviews, participants indicated that they

appreciated the multi-user capabilities of SMESY, and mentioned

that they preferred the simultaneous operations to taking turns to

carry out the same tasks. (3) They appreciated that they were not

required to wear peripherals or hold a pen for user identification. (4)

Two participants mentioned that they used PAC to correct errors. (5)

Participants found that PAC helped them understand the method by

which the system associated touch with user position. (6) Interest-

ingly, one participant commented that the only concern he had with

SMESY was the inability to move from one position to another. I

then allowed him to try out the Position Avatar, of which he reported

satisfaction. (7) Two participants from one group suggested that such

a system could be implemented by recognizing their fingerprints.

Given the technical challenges and hardware requirements for fin-

gerprint recognition with current technology, SMESY is an ideal

alternative for distinguishing multiple users’ touches.

5.4 discussions

Overall, my results are highly encouraging and confirm the potential

of SMESY as a viable approach for multi-user capabilities on common

vision-based tabletop systems.
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5.4.1 Findings

SMESY is the first system that tries to integrate Finger Orientation

with a multi-touch tabletop for touch discrimination purpose. I

evaluate the system in two separate controlled multi-user studies

and one small qualitative study. I highlight some of my primary

findings from all studies:

Reliability across entire tabletop Overall, the SVM classifier is robust in

my applications. Although my training set is collected on only

64 target locations, the system is able to classify interactions

across the entire continuous table space (confirming H2).

Handedness Even though the detection of handedness is not ex-

tremely accurate, the user prediction accuracy remains high

overall. The majority of samples for which the hand is identified

incorrectly are still associated with the correct user position.

Accuracy across tasks SMESY responds well to untrained finger ori-

entations that result from non-pointing tasks as well as from

awkward approaches when users reach around one another

during simultaneous interaction. Feedback further improves

the prediction accuracy.

Generalizing to users The system easily generalizes to new users who

did not contribute to the training data set. This type of general-

ization is typically a difficult problem in machine learning, but

is possible in my approach because of the distinct ranges of FO

values, even across multiple users.
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User configurations As expected, there is a slight penalty in prediction

accuracy for adjacent users sharing a table edge. This is due

to adjacent users exhibiting the most amount of overlap in FO.

However, the loss was smaller than I expected as I did not

find any significant differences in accuracy across different user

configurations.

User adaptation Another interesting observation was the willingness

and ability for users to adapt to the system. I found higher suc-

cess rates when users were told how the system operates. Users

were comfortable in altering their finger landing orientation

to make the system work even more effectively. Users also re-

ported that they did not feel any additional cognitive or motor

effort than when they were not given any system knowledge.

Furthermore, groups displayed an eagerness to cooperate, by

adjusting their hand position to make room for others and by

taking turns when simultaneous selection was impractical, thus

exhibiting common courtesy.

Complementarity SMESY could work as either a stand-alone system

or one that could be used in conjunction with other methods, as

in [4, 6, 8]. For example ceiling mounted cameras can provide

some information about users interacting around a tabletop. In

areas of high occlusion, where cameras may not properly detect

certain actions, the system could resort to using SMESY.
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5.4.2 Implications

My exploration of FO profiles highlights some important implica-

tions for designers: First, people appear to produce very consistent

finger orientations for pointing tasks. Although different groups

of people show diversity, their FO falls in a certain range within a

restricted demographics. Therefore, FO is the easiest and natural way

to distinguish in pointing tasks, but is also reliable in more complex

situations. Moreover, there is also potential for FO in contexts other

than user discrimination.

Second, users standing at locations that are on orthogonal and

opposite sides of the table can be distinguished with a very high

reliability. I believe that using FO for touch discrimination will be

highly reliable in smaller touch devices, such as a coffee table, a

multi-touch tablet, or even a multi-touch smartphone. For example,

multiple players can sit in each side of the device to play competitive

games. One user per side is an ideal configuration, but my studies

show that having two adjacent users on the same side can yield

a reasonably high accuracy as well. Therefore, designers can be

confident that using FO for touch discrimination with one user per

side and shall not deter from using this feature in more crowded

conditions.

Next, although once users understand how the system differenti-

ates their touches from others, their could try to fake the touch angle

to act as a different person, impersonation is not considered as a

limitation of my system. In a collaboration scenario, multiple users

try to complete a task together. There is no need to impersonate
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because their ultimate goals are the same. In contrast, in a compe-

tition scenario such as games, impersonation is less concerned for

two reasons: 1) players have integrity. Since all players are presenting

themselves, if one player is cheating, it is likely that he or she will not

be welcome in the future games; 2) in some games players only want

to gain points for themselves instead of giving points to opponents.

Hence, players will want to be identified correctly by the system.

Finally, even though my FO algorithm is implemented with a

modified FTIR table, it will work in the same way with any system

that is able to capture the touch hand contour. When using FO to

discriminate touches, the Position Aware Cursor is a fluid and easily

implementable feature that can not only improve the reliability and

robustness of a touch-discriminate system, but also quickly help

users understand how the system works.



6
S U M M A RY A N D F U T U R E W O R K

6.1 conclusion

Differentiating user touches is a feature that is currently missing in

all multi-touch devices. In this thesis, I first report on investigations

of using finger orientation to discriminate user touches. Next I char-

acterize the qualities of lightweight touch discrimination techniques.

And finally I describe my new technique, SMESY, that uses finger ori-

entation only to identify the touching user’s standing location, which

I defined as Position Awareness. SMESY has specific advantages that

makes it more appealing than other existing methods.

I describe in details the design and the implementation of SMESY

as well as the results and analysis of three user studies intended

to test the accuracy, reliability and satisfaction of this technique. To

my knowledge, my research is the first one to empirically evaluate

using finger orientation only for touch discrimination purpose with

multiple users. My studies show finger orientation is a simple, flexi-

ble and accurate method to discriminate user touches on tabletops.

Furthermore, I introduce two enhancement techniques for multi-

user applications: Position Avatar and Position Aware Cursor. With

these two enhancements, users can change locations and perform

69
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self-correcting actions in a fluid manner, without interrupting their

activities.

In conclusion, SMESY is a viable lightweight solution for providing

simple yet effective support for multi-user application features on

tabletops. The main contributions of this research are:

• The summary of existing techniques to differentiate user touches

on tabletops.

• The description of a new simple finger orientation algorithm.

• The classification of lightweight touch discrimination tech-

niques.

• The introduction of SMESY for position awareness (PA) around

a multi-touch tabletop.

• A thorough evaluation and analysis of SMESY with multiple

users.

• A set of findings and implications from users using finger

orientation for touch discrimination purpose.

6.2 future work

The most exciting prospect for future work in this area is to increase

the accuracy of using finger orientation to associate a touch point

with its correct owner. Some newer techniques look promising; for

example, Annett et al.’s [4] work, Medusa, which relies on prox-

imity sensors to sense a user’s standing position. Microsoft’s new
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surface [13] shows strong capability to capture accurate finger orien-

tation more reliably. Dang and Andre’s [5] FO algorithm can support

multiple fingers. The research presented in my thesis opens up a

number of other possibilities for future exploration:

User position SMESY does not directly identify users and cannot de-

tect movement. The Position Avatar provides a basic and easy

mechanism that allows users move around the table. More so-

phisticated methods include using overhead cameras, outward-

facing infrared range sensors, or on-ground pressure sensor,

which would limit the lightweight nature of my system.

Position profiles I collected FO profiles for specific positions around

the table. This may suffice for many applications, but the fullest

potential lies with fewer restrictions. It should be possible to

generalize my approach to accommodate untrained profiles,

for example a user standing at a corner. However, additional

hardware might be required to track a user’s position and

orientation.

Number of users My studies investigated situations with up to three

users. I believe that my system is extensible to more users with-

out modification because I have explored the most difficult

situations, side-by-side, and adjacent positions. Although my

studies show adding more adjacent users might potentially

decrease the SVM prediction accuracy, I do not expect perfor-

mance to drop with users in a different side of the tabletop.

However, additional investigation is necessary to scale my ap-

proach to a larger surface and to more users.
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Multiple fingers I collected profiles for the index finger only. My

system can be extended using existing algorithms (e.g. [5])

to detect multiple fingers from the same hand. However, no

participant complained about the use of the index finger or

found it limiting. I feel this restriction is not highly detrimental,

given the benefits.

FO algorithm Most errors stemmed from my finger orientation al-

gorithm. I expect that future systems will have bullet-proof

methods for capturing finger orientation. Furthermore, sec-

ondary biometrics such as finger pressure could be leveraged

to increase the accuracy of my system close to 100%.

Impersonation PAC is a valuable tool for error recovery, but could

assist mischievous users in impersonating others. In most group

situations, however, there is nothing to gain by impersonation.

Also, social protocols, such as courtesy, or fear of being rejected

by the group, might mitigate such issues. Future study outside

a lab environment would provide further insight on this matter.

Target smaller devices My studies show one user per side achieve

very high reliability. Testing with multiple users using a smaller

device in the wild will be valuable to determine how well

FO as a lightweight technique works in platforms other than

tabletops. In addition, smaller devices, such as multi-touch

tablets or even smartphones, are more mobile compared to

tabletops. A lightweight touch discrimination technique will be

highly desired.
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Using finger only, in general, is the best way to perform tasks
on touchable devices. Therefore, finger orientation is a natural at-
tribute that designers can make use of to discriminate user touches.
Although improvements to my technique will be necessary for users
to accept a system using SEE ME SEE YOU in the wild, in all exit
surveys, most participants responded positively when asked if the
system is accurate enough for real-world use. As more advanced
technology come to multi-touch devices, we will expect them to have
better support for multi-user applications. Associating a user touch
with its proper owner will only become increasingly important. My
work, at the first time, explores, evaluates, and proves the feasibility
of using finger orientation only to achieve touch discrimination and
I hope research in this area continues.
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