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ABSTRACT
Higher food intake rates (i.e., eating too fast) are linked to several
health concerns such as an elevated risk of obesity or gastritis. Rais-
ing awareness of one’s eating habits can regulate one’s pace of food
intake. In this paper, we propose a novel smart-eating utensil that
can potentially increase the users’ awareness of their eating rate by
detecting their food pick-up gesture as well as the weight upon each
bite. We design and implement a proof-of-concept prototype fork
with multiple embedded sensors and processor to collect the eating
data. After that, we propose a solution for food pick-up gesture
detection and food amount estimation in each food pick-up. We
assess the accuracy of our solution through ten successful data col-
lection sessions with participants. We demonstrate that our method
has strong potential to accurately detect the food pick-up gesture
and estimate the amount of food on each pick-up.

CCS CONCEPTS
•Human-centered computing→ Ubiquitous and mobile de-
vices; Ubiquitous and mobile computing design and evalu-
ation methods; Empirical studies in ubiquitous and mobile
computing; • Hardware → Sensor devices and platforms; •
Applied computing→ Health informatics.
KEYWORDS
Food pick-up gesture detection, food amount estimation, smart
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1 INTRODUCTION
Eating rates influence the health and well-being of individuals.
Researchers have linked eating rate, or how much food people eat
within a short interval, to obesity [24]. For instance, Ohkuma et
al. [24] conducted a systematic review of studies focusing on the
relationship between eating rate and obesity. They concluded that a
fast eating rate is positively correlated with one’s Body Mass Index
(BMI) and how obese they are. Understandably, studies showed
that a reduced eating rate is associated with a reduction in energy
intake [28] and hence, minimizes the risk of obesity [24], a serious
issue in North America [1, 22]. Further, Kim et al. found that a high
eating rate is associated with an increased risk of endoscopic erosive
gastritis in Korean adults [15]. Reducing one’s eating rate is also
a fundamental principle of mindful eating in order to avoid being
overweight [23]. Moreover, eating slowly could help individuals
have earlier satiety in their meals [16]. These studies show that
decreasing the eating rate is vital for improving health.

Having good eating habits, especially an appropriate eating rate,
is important. Numerous interventions have been applied in various
settings to improve eating habits [36]. Prior studies have manip-
ulated the eating rate [28], while others have leveraged digital
interventions to help modify people’s eating behaviour [29]. One
critical feature to provide such intervention is detecting eating be-
haviour accurately, especially eating rate. However, many of these
interventions are relatively difficult to apply in everyday life. For
example, some require setting up extra devices and equipment such
as a Mandometer1 or a Smartplate2. Such burdensome tools and
settings might discourage adoption of the tools. Thus, we propose
the development of a smart and easy to carry eating utensil that
can monitor food pick-up gestures and food weight on the utensil.

We identified critical capabilities and essential functions to de-
sign a device to detect eating rate. The device or systemmust be able
to detect the movement of delivering food for consumption, and
how much food is consumed by the user in weight or energy. Thus,
we focused on proposing a self-contained solution to detect the
food pick-up gesture on its rotational movement and food weight
in a fork. An Inertial Measurement Unit (IMU) was used to detect
the eating gesture based on prior projects which examined various

1https://mando.se/en/
2https://www.getsmartplate.com/index.html
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Figure 1: The rotational movement while eating use a fork

modalities to detect eating moments [33]. As for the food amount
estimation, we applied a load cell to predict the weight on the fork.

After we investigated the load cell and the IMU sensor data,
we proposed to apply a regression model to the load cell data to
estimate the weight of the food. After we developed a prototype
using a fork as a base, we conducted a studywith twelve participants
to collect sensor data on the prototype. We evaluated the method
on the dataset and found it is efficient to detect the food pick-up
gesture and estimate the food weight.

This work stands to make three main contributions, specifically,
in the area of digital monitoring for eating behaviour. First, we
provide a prototype eating utensil that has variable sensors to col-
lect data for the development of methods to detect a food pick-up
gesture and food amount in weight. Second, we produce a method
to detect eating gesture and food weight based on the sensor data.
Lastly, we provide an evaluation to study the accuracy of our pro-
posed method with eating data collected with participants.

2 RELATEDWORK
2.1 Eating Detection Techniques
Researchers first found using the Inertial Measurement Unit (IMU)
on the smart watch could help to detect the eating movement [32].
Thomaz et al. [32] presented a practical approach that leveraged an
inertial sensor from a smartwatch to identify eating moment. They
conducted a semi-controlled lab study to train an eating moment
classifier based on inertial sensor data, and then they validated the
classifier in two in-the-wild studies. Compared with other modali-
ties such as first-person images captured by a camera and acoustic
data captured by earbuds, inertial sensing is beneficial because it
does not interfere with user privacy [33]. Maintaining user privacy
also makes motion tracking more appropriate when applying this
modality to detect intake behaviour in research studies. Mirtchouk
et al. [20] concluded that the combination of multiple sensingmodal-
ities and personal free-living data could improve accuracy of eating
detection. Furthermore, Dong et al. affixed a smartphone on a user’s
wrist to collect accelerometer and gyroscope data to detect whether
or not a user was eating based on the data collected [6].

2.2 Detect Eating Gesture and Bite
Various solutions have been raised to track the eating gesture. Kim
et al. [14] designed Slowee, which is equipped with elaborate sen-
sors on headphones and a necklace to detect the eating action,
which are potentially intrusive to users. The Slowee system applies
Electromyography(EMG) and piezo sensors to detect chewing and
swallowing, in order to provide eating speed guidance. Kadomura
et al. [12] designed and implemented a smart fork called Sensing

Figure 2: The current prototype we built for the data collec-
tion sessions and the current prototype circuit structure

Fork to recognize eating behaviour for children and the fork can
detect the eating gesture as well as the food color.

Dong et al. proposed a method to detect the bites gesture by
monitoring the variation of the roll value caused by rotational
movement of the wrist from the inertial sensor worn on the wrist
[4]. Dong et al. introduced an algorithm that applied the roll velocity
of the inertial sensor to track the eating wrist motion [5]. Their
method is simple enough to be implemented into micro processor
chips. Following this method [5] Shen et al. applied a wrist motion
tracker to detect and count bites for eaters in a cafeteria [30].

Zhang et al. [35] developed a machine learning model on the IMU
sensor data from the wrist band to detect the feeding gesture and
recognize bites. They conducted the data preprocessing and model
training while comparing various algorithms and parameters for
the development of the machine learning model. Zhang et al. used
a wrist-worn sensor to detect eating episodes on eight participants
in the wild and found high false alarms were detected caused by
hand movements such as texting on the phone [34].

Kyristis et al. [19] generated a dataset from an IMU sensor on
a wrist band from Microsoft and annotated the data using video
data captured by a Gopro. Kyristis et al. used Supported Vector
Machine(SVM) and Hidden Markov Models(HMM) to train their
models to detect the five eating micro-movements including: pick-
ing up food, upwards, downwards, feeding food to mouth,and no
movement. Kyristis et al. present a solution that combines the SVM
with Long Short Term Memory(LSTM) network to improve the ges-
ture detection on the dataset collected with 10 participants using a
smartwatch [17].Papadopoulos also applied the SVM and LSTM to
a semi-supervised machine learning method on the eating gesture
detection [25]. In the recent project, Kyristis et al. proposed an
algorithm combining the Convolutional Neural Network(CNN) and
LSTM to detect the food intake cycles on a dataset of twenty-one
meals with twelve participants [18]. The evaluations of the method
showed their proposed method has sufficient performance [18].
These machine learning based gesture pattern models are accurate
but complex with heavy models. It is hard to deploy such a model
in an embedded device (e.g. Arduino board microcontroller with
ATmega328P ( 32 KB memory and 2KB RAM)).

2.3 Food Weight Detection
To detect the eating rate, the system needs to accurately detect the
food weight/ energy intake. Amft et al. [2] investigated applying
chewing sound to predict the weight of each bite through linear
regression and they verified their approach with three selected
foods across eight participants. Mitchouk et al. [21] proposed to
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Figure 3: The roll velocity data plot from the session data
(S1) collected from Participant 1 (P1).

use in-ear audio and motion sensor on the head and wrist to detect
the food type and estimate the food amount in weight consumed
by people. Besides, the food weight, Hamatani et al. [11] designed
FluidMeter which leverages the IMU sensor data from a smartwatch
to detect the human drink activity and estimate the amount of fluid
intake in weight by analyzing the motion sensor data.

Several other devices have been used to measure food consump-
tion in weight. One such device, the MandoMeter, leverages a smart
device with a scale that put under the food to track food consump-
tion through tracking the weight change of the meal and provides
visual feedback on a smartphone application. Another device, Smart-
Plate, includes a weight tracking plate embed with a scale to track
weight and a smartphone application that could take pictures of the
food on the plate to provide visual analysis data on the meal. Both
the MandoMeter and the SmartPlate require additional equipment
in the form of a plate size weight scale.

3 DESIGN AND IMPLEMENTATION
3.1 Prototype Design
Our prototype of the smart fork utensil is shown in Figure 2. It
is a self-contained device with a controller section for the data
collection. The current prototype contains a customized Printed
Circuit Board(PCB) with an ATmega328P micro-controller on it,
and a Bluetooth module to support information transmission. A
load cell with a capacity of 780g was attached to the prototype and
its corresponding driver was embedded on the PCB to extract the
load cell sensor data. The load cell could detect the force on the
top of the fork (i.e., the weight of the food). There is an Inertial
Measurement Unit(IMU; MPU6050 module) on the board to detect
the motion of the utensil. Finally, the prototype is powered by a
3.7V 400 mAh Li-po battery. The current prototype is around 23
cm long, 4 cm wide and 1.7 cm high. The fork tip is a one-time use
plastic addition, which is replaceable for hygiene purpose.

3.2 Food Pick-up Detection Implementation
Kadomura et al. [13] categorized the eating motion into four stages:
at rest, holding, poking and biting. In another project, the food in-
take cycle could be categorized into five different micro-movements
including picking up food, moving the device upwards and down-
wards, delivering the food to one’s mouth, as well as no movement

Figure 4: The chunk of roll velocity data plot for the cycle of
the rotational motion corresponding to a series of pick-up
gestures. The data collected from the session data (S1) col-
lected from Participant 1 (P1).

[19]. To make it simple, we first aimed to detect the eating move-
ment in a less complex stage structures. Using Dong’s algorithm
[5], we found that there is a rotational movement while eating with
a utensil, especially when picking up the food and then angling the
fork to deliver it to the mouth (see Figure 1).

The IMU sensor provides the orientation data of the angular roll,
pitch and yaw values. We leverage the IMU sensor data to track the
movement of the fork by computing the roll velocity to detect the
rotational gesture. Following Dong’s approach [4] we compute the
derivative of the roll data as the roll velocity to show the changes
of the roll (the roll velocity results from data collection session 1
(S1) with Participant 1 (P1) are shown in Figure 3).

Algorithm 1: Food Pick-up Gesture Detection
Data: rv as the roll velocity at the current time;
Result: Food Pick-Up Detection
bitestart is false;
pickup is false;
while not at end of the dataset do

if rv is larger than thresholdvalue1 and bitestart is false
then

bitestart is true;
end
if rv is less than thresholdvalue2 and bitestart is true then

pickup is true;
bitestart is false;

end
if rv is larger than thresholdvalue3 and pickup is true
then

pickup is false;
bite detected;

end
end

We modified Dong’s algorithm [4] and developed a threshold
value based algorithm, which are show in Algorithm 1. We added
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Figure 5: Food provided for the study

one more threshold value in our algorithm compared with Dong’s
algorithm. In Dong’s algorithm [4], aside from the threshold value
on the roll velocity, there is also a time interval threshold value
to count the bites and eating gesture. In contrast, we only focus
on the food pick-up gesture and we infer bites upon the pick-up.
Thus, we did not set a time interval threshold value for pick-up
detection since we believe the pick-up gesture is solely related with
the movement rather than the time duration (see Figure 4).

3.3 Food Weight Estimation Implementation
We leveraged the load cell to detect the weight of the food on the
fork. As we learned by a previous design, the load cell could be
used to develop a scale, especially a spoon-sized scale used to get
the weight of food ingredients in the kitchen [31]. One challenge
with the spoon scale is that the scale requires users to pick up food
and wait for a certain amount of time for the spoon to stabilize
before obtaining the weight value. Since eating behavior is a series
of actions that are connected (picking up food, and then biting, etc.),
the time required to pick up the food and wait for the load cell to
compute the result are not reasonable in a real eating scenario.

We computed the food amount value by taking the load cell force
value’s average (lc) in a time span. Since the sensor data gathered
in movement varies at each time, we computed the average of the
load cell value to reduce this variability. We then applied a linear
regression to compute the Weight (W) with the linear regression
parameters (p and I) to compensate for the noise caused by the
mechanical structure and the sensor itself.

𝑊 = 𝑙𝑐 ∗ 𝑝 + 𝐼 (1)

3.4 Issues in the Implementation
3.4.1 Potential Left Hand Issues. Since our algorithm leverages the
rotational movement induced by picking up food, the approach
(Algorithm 1) is, theoretically, applicable to either left or right hand
users as the rotational movement is similar in both. Furthermore,
food weight estimation computation is unaffected by handedness.

3.4.2 Noise in Data. Compared with the previous work [35], we
did not apply a smoothing techniques to the raw data since we aim
to keep the system simple to deploy on the fork itself. A preliminary
study shows that the noise is within control. Small effects of the
noise caused by the sensor will not significantly affect the results.

4 STUDY METHODOLOGY
4.1 Participants
Twelve participants (Females = 3) were recruited from a local uni-
versity. The participants were required to be 18 years of age or
older, and have no food allergies or food restrictions to the fruit

Figure 6: Participant 5 (P5) in the data collection session.
(left) the participant’s fork is leaning toward the food. (right)
the participant picks up food. Both of these states are dis-
tinctly recognized by our method.

cups we provided for the experiment (see figure 5). Data from two
participants were excluded due to mechanical errors. Thus, for anal-
ysis, we used the remaining ten participants (Females = 2) from this
study. All participants were right handed.

4.2 Study Procedure
The studies were conducted in a lab. Each participant was asked
to eat using the prototype, which would send real-time data to
computer via Bluetooth. Two types of fruit cups were provided;
the first half of the participants had mandarins slices while the rest
were asked to eat peach slices (see Figure 5). The ingredients of
the food were shown to participants before they started eating for
health purposes and we put the fruit into a one-time use bowl for
each participant. The fork prototype was put horizontally, facing
upward to initialize the load cell and IMU. During each session, we
used a scale under the bowl of the fruit to track the weight in the
bowl, and a GoPro camera was placed in front of the participants
to capture the ground truth of the eating gesture and the food
weight showing on the scale screen (see Figure 6). The sensor on
the fork collected the data and transmitted it to the computer with
a frequency at approximately 100 Hz. First, the instruction of the
study was provided by the on site researcher. After they agreed and
signed the consent form, the eating activity started: Each session
took up to 30 minutes. The participants were asked to eat at their
own speed.

Following previous studies [21, 25], we asked participants to
perform a quick vertical movement with the fork at the beginning
and the end of the session. The purpose of the gesture was to
generate a high peak in the data to support the synchronization of
the sensor data and the ground truth (see Figure 7).

4.3 Ground Truth Annotation
After the study, the Boris software[9] was used to annotate the
video for the ground truth of the gesture and weight on the scale
in time span. We chose to use Boris over other softwares (e.g.,
ChronoViz[8]) or the software developed by researchers for the
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eating gesture annotation [27] because Boris is convenient to anno-
tate behavior in a more detailed way for video with corresponding
timestamps.

We first plotted the raw data at the Z axis of the acceleration in
IMU (e.g. Figure 7). We found the high peak gesture in the figure
and then we found the corresponding data point. We synchronized
the moment of high peak in the video with the corresponding
moment in the sensor data. We then annotated the start and the
end high peak movements and the pick-up gesture. The pick-up
gesture started from the moment the fork started approaching the
fruit target, and it ended when the food was picked up. During the
annotation, we found some events such as food falling down from
the fork and the user poking the food multiple times to pick up the
food. These actions are natural and happen regularly in real life.
We further annotated the weight values on the scale in grams.

Figure 7: The plot of the Z axis of the accelerator sensor data
from participants 1 (P1). The red rectangle was labelled to
show the high peak movement sensed by the sensor.

Additionally, we processed the annotation data by extracting the
weight value and the gesture annotation with the corresponding
time and removed the irrelevant observation data created by the
Boris software. Then we matched the annotated start and the end
time points with the sensor data. After this, we computed the food
weight based on the weight scale data recorded. The food weight
per pick-up was computed by the weight changes between two
consecutive time points on the scale (i.e., before picking up food
and after picking up food).

Next, we labelled the raw sensor data with the corresponding
synced ground truth data (including start, end, and pick-up food)
and the weight record. After we finished processing data for all
of the ten participants, we manually cleaned the data to run the
algorithm for the detection. The data sets required extra cleaning
due to some broken data points caused by Bluetooth. The final
dataset was then used to build the detection algorithm to detect the
pick-up gesture and weight.

5 EVALUATION
We applied our algorithm 1 to perform the gesture detection and
compute the accuracy on the pick-up gesture detection.We used the
ground truth data with the sensor data to train a linear regression
model to predict the food weight estimation. The evaluation of
the utensil design was based on the analysis of the study data

Figure 8: The classification of the gesture detection results in
the cycles of the gestures. The red lines are the ground truth
gestures. The chunk of the data from Participant 3 (P3) in
Session 3 (S3).

collected with the prototype. We analyzed the results from both of
the detection of the pick-up gesture and the estimation of the food
weight. Following the previous paper [4], we first computed the
sensitivity of the food pick-up gesture detection. Thenwe computed
the accuracy of the food weight estimation.

5.1 Gesture Detection Sensitivity
Based on Dong’s method [4], we computed the sensitivity to eval-
uate the detection of the pick-up gesture. We first computed the
frequency of true detections, undetected, and false detections. Fol-
lowing Dong’s definition [4], true detections are pick up gestures
that are within the cycle of the pick-up gesture defined by the
method. Additional detections within same cycle were identified as
undetected. A pick-up cycle detected with no true pick-up gesture
occurring within the cycle are false detection.( See Figure 8).

The sensitivity is computed following Dong’s method [4]:

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑡𝑟𝑢𝑒 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑠

𝑡𝑟𝑢𝑒 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑠 + 𝑢𝑛𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑔𝑒𝑠𝑡𝑢𝑟𝑒𝑠 × 100%

5.2 Gesture Detection Results
The algorithm for gesture detection was tested based on our data,
and the accuracy of the eating detection is computed. We conducted
trials to tune the parameters of the algorithm and evaluate the
accuracy of our method of detecting the food pick-up gesture.

After the trials of tuning the parameters of the algorithm, we
found that if we set the thresholdvalue1 as 15 and thresholdvalue2
as -15 and the thresholdvalue3 as 0 for the cycle of the gesture, we
could compute the higher accuracy result. After investigating, we
detected 202 pick-up gestures out of 226 food pick-up gestures seen
in the video. The sensitivity was computed as mentioned above.
The resulting sensitivity of the device and the method is 89.38%.
The results are summarized in Table 1.

5.3 Weight Estimation Results
We examined the load cell data of the all the 202 true detected pick-
up gestures. We found that Participants 3 and 4 ’s load cell data were
outliers caused by improper calibration and initialization of the load
cell ( the results are negative in load cell sensor data), hence, we
excluded data from those two sessions. We then calculated the load
cell data from the true detected cycles. The sum of the positive load
cell data was calculated once the second If condition ( roll velocity
is less than thresholdvalue2) is satisfied in the algorithm 1 and the
roll angle data is less than the threshold value T and larger than the
threshold value -T (i.e., the fork is horizontally facing upward). After
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Table 1: Performance of the pick-up detection on 10 partici-
pants

Participants True detect Undetected False detect

1 18 1 1
2 16 4 2
3 11 6 7
4 21 0 1
5 24 3 0
6 21 2 2
7 40 3 4
8 14 1 4
9 16 3 4
10 21 1 1

investigating the sensor data, here we set the threshold value as 15.
Then we compute the average load cell value (Loadcell). Inspired
by FluidMeter project [11], we computed the Pearson correlation
coefficients of the load cell value and the ground truth weight data.
After further excluded 4 outliers from the dataset (i.e., the load cell
value are negative values), the Pearson correlation coefficient value
was (r = 0.878) among 166 true detected pick-ups.

5.4 Weight Estimation Accuracy
We calculated the weight estimation accuracy by training a linear
regression model based on the true detect gesture cycles. The model
was trained based on the dataset using a Leave-one-intake-out cross-
validation following previous work [21]. The data was split into
N-folds where N is the 166 true detected gestures (see Figure 9).

We followed previous work [11] to calculate the weight estima-
tion accuracy by computing the Mean Absolute Percentage Error
(MAPE) as the metric to evaluate the result of the estimation. We
calculated the MAPE for the pick-ups that have food on it. In the
data set, four pick-ups are further excluded since the weight ground
truth is 0 caused by food falling down after the pick-up gestures. The
MAPE focuses on the absolute error caused by the estimation for
each pick-up food weight. The MAPE was calculated to be 26.297%,
which is relatively lower compared with previous work[21] and the
mean absolute error was calculated to be 1.357g.

6 DISCUSSION
To further understand the reason for the false and undetected ges-
tures, we plotted and investigated the data. We discovered that
undetected gestures occur when participants try to pick up food
too quickly: This is not detected by our method since the method
monitors the roll velocity in a longer time span.

The weight estimation resulted in an error rate of 26.297% in
MAPE. We investigated the dataset to explore the cause of this error
rate. Negative values were found in the load cell data, which may
have been caused by the feeding gesture or the food poking gesture.
Since the feeding gesture is connected to the food pocking gesture,
a latency issue may have affected the result of weight estimation.
The angle of the load cell on the fork may have also influenced the
sensor data since the force values from the load cell are influenced
by the angle between the fork and the gravity direction. Users

Figure 9: The scatter plot of the foodweight amount in gram
(i.e.,the ground truth amount )and the average value of the
load cell value of 166 points

may potentially use this fork at an angle, which will cause the
force value to be lower than the ground truth. In future work, we
intend to leverage the MPU6050 sensor’s vertical acceleration data
to counter-balance the angle problem generated by the load cell.

7 LIMITATIONS
7.1 Prototype Size and Utensil Variety
Our prototype is still bulky for most users due to the size of the
control board. Currently, the device is approximately twice as large
as a normal eating utensil, which could influence the user’s eating
gestures. A study is needed to investigate whether the prototype
size could influence the user’s eating gesture and the detection
accuracy. While we were able to develop a successful prototype,
further iteration of the prototype is needed to deliver a more ac-
ceptable, simple, and robust smart utensil. Specifically, we plan
to iterate future prototype designs to reduce their size and match
that of traditional eating utensils, while also working on improving
the eating behavior recognition function. One of the challenges
associated with these improvements will be the simplification of
its set-up process as our smart utensil should be used frequently.

There may potentially be different eating patterns while using a
variety of different utensils such as a spoon; this question remains
unexplored. For future iterations, the utensil may be designed with
an interchangeable part at the tip of the tool to switch from a fork
end to a spoon end. This change would allow us to investigate the
eating detection with other types of utensils as well as food types.

7.2 Eating Activity and Eating Setting
Our study did not consider potentially distracting events such as
sharing a meal with other people and multi-tasking while eating.
These occur regularly in real-life situations and might influence
the detection algorithm. [34].
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Water was not provided during the session since there was al-
ready syrup from the fruit cup we provided, and we were not con-
cerned about choking. Additionally, a drinking gesture could have
disrupted the data as well as the overall flow of the study. Thus, we
opted to control this aspect of the experiment. In future studies, we
may look into providing liquids. We are interested in investigating
the effect of drinking gestures and how it may influence the gesture
detection. For the sake of simplicity, the food provided was also
limited to two different types of fruit. In the future, we may look
into expanding the types of food to test how it may affect the ges-
ture detection. For the food weight estimation, the calories of each
bite of food and the total amount of the energy of the consumption
at the detection procedure was not considered.

7.3 Eating Behaviour and Eating Patterns
While everyone has their own unique eating patterns, our method
is not able to distinguish such unique patterns yet. To effectively
develop an individualized method, much more data need to be
collected in real world setting. Note data collection in real-world
setting will be particularly important as noise could also be an
contributing factor to errors. Another limitation is that our method
detects food pick-up gestures rather than the actual bite itself [18].
To monitor the eating rate, bite detection is needed in real-world
setting such as a user picking up food without feeding themselves.
However, our current method can not detect such behaviour.

7.4 Longitudinal and In-the-field study
The experiment was conducted only one session per participant.
We are interested in the results of a longitudinal study to validate
our method in a longer period of time. Besides, the current data
collection sessions are conducted in the lab. The in-the-field study
[32] such as data collection with the eaters in a university cafeteria
[5] will be fruitful to generalize the method in a larger scope.

8 FUTUREWORK
8.1 Real time intervention on eating rate
After we detect the food pick-up gesture and the food weight on the
utensil, we could then potentially compute the eating rate by divid-
ing the food weight by the time interval between two consecutive
food pick-up gestures. With a device that could provide eating rate
detection, researchers could design various feedback mechanism to
intervene users’ eating rate during a meal. Such real-time feedback
intervention (i.e., vibration on 10s fork 3) could provide an in-situ
effect on the eating regulation [3]. When such solutions is ready, we
hope the device will be useful in the future so the users’ awareness
about their eating behaviours can be enhanced [37].

8.2 Improving the Detection Method
Patil et al. applied the ProtoNN algorithm [10] to train their model
and applied the predictor into an Arduino to conduct the gesture
recognition. Inspired by Patil et al. [26], we aim to look for other
methods to detect the eating gesture with the capacity to deploy

3https://slowcontrol.com/en-us/

on the prototype itself and then compare different methods. More-
over, the lower accuracy rate will need to be improved to promote
acceptance.

8.3 Deploying the Algorithm
Currently, we are working on deploying the algorithm to the proto-
type itself. We wish the method could work in a good performance
in order to work in real life setting as a standalone prototype [7]. In
addition, recruiting left handed users would allow us to explore the
generalizability of our results. We will also investigate the users’
subjective experiences about using our utensil, since it is a new
design.

9 CONCLUSION
Inappropriate eating behavior could trigger various health issues.
Based on previous studies, we know that fast eating rates could
lead to obesity [24], while slow eating rates could lower calorie
intake [28]. Researchers further find a high eating rate to be linked
to an increased risk of gastritis [15]. Indeed, reducing the eating
rate is the first fundamental principle of mindful eating, which
focuses on the enjoyment of food without judgement of sensations
[23]. This paper proposed a solution to help eaters monitor their
eating rate by detecting their food pick-up gesture and calculate
the food weight on each pick-up. From this idea, we built a proof-
of-concept prototype fork with various sensors. To the extent of
our knowledge, this is the first solution to both calculate the food
weight and detect food pick-up gestures with data collected from a
fork.

The primary goal of the solution was to detect both food pick-
up gesture and food weight estimation. We conducted an in-lab
study that assessed the efficiency of the method by examining the
detection of pick-up gestures and the weight of the food per pick-up.
The ground truth data of the study was recorded to annotate the
sensor data and compute the accuracy. We used a weight scale to
track the weight change of the fruit in the bowl and placed a camera
in front of the participant to track their hand movement. The data
collected from the sensors attached to our prototype was used to
develop a food pick-up gesture detection and weight estimation
method. We evaluated both features using the data collected from
the experiments and found that both models performed well. In
the future, we hope to leverage our findings by deploying these
features onto the next iteration of our prototype such that the next
smart utensil is able to detect food-pick up gestures and calculate
the weight of each bite alone. By warning users that they are eating
too fast, this solution will be a beneficial asset in healthier eating
habits.
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