
Preprint typeset using LATEX style AASTeX6 v. 1.0

3D VISUALIZATION OF ASTRONOMY DATA CUBES USING IMMERSIVE DISPLAYS

Gilles Ferrand
Dept. of Physics and Astronomy, University of Manitoba

Jayanne English
Dept. of Physics and Astronomy, University of Manitoba

Pourang Irani
Human-Computer Interaction Lab, Dept. of Computer Science, University of Manitoba

Abstract
We report on an exploratory project aimed at performing immersive 3D visualization of astronomical
data, starting with spectral-line radio data cubes from galaxies. This work is done as a collaboration
between the Department of Physics and Astronomy and the Department of Computer Science at the
University of Manitoba. We are building our prototype using the 3D engine Unity, because of its
ease of use for integration with advanced displays such as a CAVE environment, a zSpace tabletop,
or virtual reality headsets. We address general issues regarding 3D visualization, such as: load and
convert astronomy data, perform volume rendering on the GPU, and produce physically meaningful
visualizations using principles of visual literacy. We discuss some challenges to be met when designing
a user interface that allows us to take advantage of this new way of exploring data. We hope to lay
the foundations for an innovative framework useful for all astronomers who use spectral line data
cubes, and encourage interested parties to join our efforts. This pilot project addresses the challenges
presented by frontier astronomy experiments, such as the Square Kilometre Array and its precursors.

Keywords: radio astronomy, galaxies, HI emission, data visualization, virtual reality

1. MOTIVATION

One of the major challenges faced by astronomers is
to digest the large amount of diverse data generated by
modern instruments or simulations. To truly exploit the
data, it is necessary to develop visualization tools that
allow exploration of all their complexity and dimensions,
an aspect that is unfortunately often overlooked. Al-
though astronomical data is commonly obtained in pro-
jection, producing 2-dimensional images, the addition of
spectral information can make the data 3-dimensional.
Examples include observations from Integral Field Units
in the optical regime as well as microwave and radio tele-
scope receivers, we use the latter for illustration below.
Manipulating the resulting 3D data cubes in a meaning-
ful way is a non-trivial task, that requires a knowledge
of both the physics at play, and the visualization tech-
niques involved. We have started an interdisciplinary
project at the University of Manitoba, a collaboration

gferrand@physics.umanitoba.ca

of astrophysicists and computer scientists, to investigate
the use of Virtual Reality (VR) environments.

Radio data cubes of galaxies— An important astrophys-
ical process is the emission by neutral hydrogen (HI)
of a line with a rest-frame wavelength of 21 cm, that is
detected with radio telescopes. Observations of this spe-
cific emission line are made at different wavelengths, in
different receiver channels, that correspond to the same
line but shifted by the Doppler effect, because of the
motion of the emitting material – hence channels can be
labelled as a velocity dimension. Another similar exam-
ple is the microwave line emission of carbon monoxide
gas (CO). If the source is spatially resolved, the resulting
product is a 3D data cube, that has 2 spatial dimensions
and 1 velocity dimension.
For our experimentations we have chosen the galaxy

NGC 3198, a type SB(rs)c spiral located at 9.5 Mpc.
The object was observed in optical, infrared, ultravio-
let, as well as in radio. We are using data from the

ar
X

iv
:1

60
7.

08
87

4v
1 

 [
as

tr
o-

ph
.I

M
] 

 2
9 

Ju
l 2

01
6

mailto:gferrand@physics.umanitoba.ca


2

THINGS survey1 obtained at the NRAO Very Large
Array (VLA). The data cube is 1024×1024 pixels by
72 velocity channels, of the order of 75 million points.2

A typical desktop of a radio-astronomer is shown on
figure 1. The Karma software suite3 is still widely used
despite being 20 years old and no longer actively main-
tained. The plots shown are a projection and a slice in
the cube, so reducing the dimensionality of the data. In
this paper, we intend on visualizing the entire data set.
The Karma software does 3D volume rendering, and lets
the user define the colour transfer functions in a precise
way, but it offers very limited interactivity given its age.
The next generation tool is the Viewer application from
CASA: the Common Astronomy Software Applications
package, however it does not currently support 3D ren-
dering, which was not identified as a priority.4 Other
specialized software like GAIA or even ds9 offer some
3D modes.5 However all these software are made for the
desktop, and none offers support for advanced displays.

The role and challenges of 3D in scientific discovery — In
this paper we are interested in displaying the 3D data
in actual 3D space, to get a holistic view, in the expec-
tation that this will generate a more correct perception,
and help build an intuition, of the data. We think this is
important for quick interpretation, and also necessary to
discover structures that were not anticipated – we em-
phasize that our data are from observations, so they are
poorly structured and their actual content is not known
in advance. The next-generation radio facilities being
developed, such as the SKA, will produce amounts of
data that will require much progress not only in terms
of hardware but also in terms of software and assem-
bling the visualization pipeline. While it is anticipated
that automated analysis systems will be put in place,
the direct inspection of the data will still remain criti-
cal to ensure proper operations and to foster discovery
(Hassan and Fluke 2011). The human brain is wired to
analyze 3D environments, and we do have 3D displays,
so it seems natural to use them to visualize our 3D data.
In this regard, the interface between the machine and

1 http://www.mpia.de/THINGS/Overview.html
2 Astronomical data can of course be much bigger than this, we

defer the handling of larger-than-memory data to future work, on
this topic see Hassan et al. (2011).

3 http://www.atnf.csiro.au/computing/software/karma/
4 See a progress report at https://science.

nrao.edu/facilities/alma/alma-development-2015/
VisualizationPortal.pdf, the current focus is on porting
the software to the cloud, see Rosolowsky et al. (2015).

5 Another approach is to use generic 3D visualization software
(see a review of some options for radio astronomers in Punzo et al.
2015), or to write custom programs using visualization libraries
(e.g. S2PLOT by Barnes et al. 2006).

the human brain is the bottleneck in the interpretation
of complex astronomical data: it was already pointed
out by Norris (1994) that visualization tools have to
be more user-friendly. These days there is (again) a
lot of hope and momentum in the field of Virtual Re-
ality (as well as in the field of Augmented Reality, or
combinations thereof). It has already many professional
applications, in the fields of engineering, architecture,
marketing, training, health, and scientific visualization.
But developing interfaces allowing for Natural User In-
teraction (NUI) in 3D is still an active field of research –
we note that in their review of solutions for astronomers,
Punzo et al. (2015) deliberately did not consider the new
generation of cheaper 3D hardware (such as the Leap
Motion or the Oculus Rift), because of their still uncer-
tain fate, and also because of the lack of expertise for
these new interfaces. We think that astronomers should
embrace this new technology, and develop the interfaces
they need to take advantage of it. Producing tools and
techniques that support and enhance our research is im-
portant, so that astronomy remains at the forefront of
the field of visualization.

2. TOOLS AND APPROACH

With our project we are moving away from the vi-
sual arts tradition of representing the world on a canvas
–something we all became acquainted with, but really is
a construction and requires training, closer to the way
we actually perceive the world with our senses.

Virtual Reality displays— On the flat display of a desk-
top or mobile computer, the visualization is limited to
2D views: slices and projections, that have to be flipped
through, or a fake 3D view, emulated with tricks like per-
spective and shading. Stereoscopic 3D can be achieved
using dual projectors, that present a slightly different
image to each eye – a technique that most of us have
experienced in movie theatres. The 3D displays we are
considering here bring something more: the tracking of
the viewer (commonly using infrared cameras), which
makes the experience distinctively different. First this
enables motion parallax, which gives a much stronger
depth cue, and second this allows direct interaction with
what is being displayed. Depending on the hardware
used, one can get the feeling of being fully immersed in-
side the data cube, as if it was a physical object that we
can explore and manipulate.
3D displays for Virtual Reality come broadly into two

categories: “fish tanks”, systems where the user is look-
ing at a fixed screen or set of screens that define the
boundaries of a virtual volumetric screen, and head-
mounted displays (HMD), systems where the user is
wearing a pair of screens attached directly in front of
their eyes.

http://www.mpia.de/THINGS/Overview.html
http://www.atnf.csiro.au/computing/software/karma/
https://science.nrao.edu/facilities/alma/alma-development-2015/VisualizationPortal.pdf
https://science.nrao.edu/facilities/alma/alma-development-2015/VisualizationPortal.pdf
https://science.nrao.edu/facilities/alma/alma-development-2015/VisualizationPortal.pdf


3

In the first category, of “fish tanks”, we have been
experimenting with a CAVE = Cave Automatic Vir-
tual Environment by Visbox (see figure 2) and with the
zSpace tabletop. Both are made from flat screens, oper-
ating at HD resolution of 1920×1080 pixels. The CAVE
uses dual projectors for each screen (we have two: one
wall and one floor, making 1920×1080×1080 voxels),
while the zSpace uses a LCD screen at double the stan-
dard refresh rate (120 Hz). Both rely on the polarization
of light to separate the left and right images, using pas-
sive polarized glasses. Both make use of IR cameras to
track the position of the glasses and other interaction
devices: the Flystick “wand” in the CAVE, the built-in
stylus on the zSpace. The CAVE is a human-scale de-
vice, of several cubic meters, while the zSpace fits on a
desk, offering a smaller but also crisper view. We ob-
served that some scientists prefer the former, because it
allows them to be immersed inside the data cube, while
others prefer the latter, because it allows them to play
with the data cube in their hands in a simple setup.
In the second category, of HMDs, we plan to experi-

ment with two headsets that were very recently released
for the general public: the Rift by Oculus, and the Vive
by HTC and Valve. These promise full immersion, and
are available at a much lower price point – so it is im-
portant for scientists too, to see if they will lead to mass
adoption. A drawback of the headset approach is how-
ever that the pixel resolution looks coarser, and that it
is not easy for people wanting to collaborate to share
the same physical space (for a comparison of a high-end
and a low-cost solution, see Fluke and Barnes 2016).

Development with the Unity engine— We see that there
are different technical solutions available for immersive
displays, and that they rely on more hardware parts
than a standard display. Fortunately, we have reached
a point in time when it is no longer necessary to know
about all the technical aspects to harness these systems.
Rather than expanding an existing scientific visualiza-
tion software to advanced displays, we took a radically
different approach, of customizing a generic 3D platform
for our needs. We have been building our prototype us-
ing Unity, the most popular engine for game develop-
ment.6 While the choice of a game engine may sound
surprising at first, building on a market standard offers
a lot of advantages, in particular for fast prototyping
and testing. Unity has millions of users worldwide, and
benefits from continuous development, on a scale that is
normally not accessible to scientists. It has already been
used for a number of “serious applications”, in particular

6 https://unity3d.com
We have been using the (free) personal edition of Unity version 5.

in the medical and architectural fields, with also several
experiments in the natural sciences: biology, geology,
meteorology.7 Locally, the Human-Computer Interac-
tion lab has adopted it for the development of immersive
environments to simulate the devices of the future.
Unity allows a high-level programming and designing

so that we can focus on the content. It allows for visual
editing and immediate testing of the scene and the code,
which when ready can be exported as a standalone ex-
ecutable. It is cross-platform, and targets all devices,
including all the advanced displays that currently exist.
Support may be built-in, or enabled via plugins provided
by hardware vendors or by third-party specialists. See
figure 3 for a schematics of the software-hardware inter-
face in the case of the CAVE. In the CAVE we use the
middleVR middleware to interface with all the display
and interaction components; on the zSpace we use the
zCore plugin provided; all the popular headsets are also
supported. This way we could develop a demo on the
desktop, and port it with minimal effort to various VR
displays, without having to worry about the handling
of multiple cameras to get the stereoscopy, or knowing
about the different drivers needed for the head tracking.
This is important because scientists need continuity in
their workflow when working with different visualization
platforms.
A drawback of using a generic solution is that it is not

tailored for our particular needs, and so may not offer
the best possible performance for a given task.

3. WORK ACCOMPLISHED

In a period of a few months, we developed a prototype
tool that loads a radio data cube of the galaxy and ren-
ders it in 3D, on the desktop and in VR displays, so far
the CAVE and the zSpace.8 It offers basic interaction
capabilities to manipulate the cube: translate/rotate
along/around any axis, scale up or down, and slice,
with whatever input device felt appropriate: the key-
board+mouse on the desktop, the wand in the CAVE,
the keyboard+mouse and the stylus on the zSpace.

Loading the astronomical data— The first task was to
load the data in Unity: the software unsurprisingly does
not know about the FITS format that is commonly used
in astrophysics, so the data has to be converted. Even
though this step may be trivial for computer scientists,
it is perceived as a bottleneck by many astronomers.

7 The only attempt to use Unity in astrophysics, that we are
aware of, was made by a team at Caltech (Cioc et al. 2013), that
was also investigating virtual worlds, with a focus on the visu-
alization of multi-dimensional data – using the highest available
number of physical dimensions.

8 We also exported to the web using WebGL, but this no longer
seemed feasible when we started to do volume rendering.

https://unity3d.com


4

Rather than writing our own parser, we read the FITS
file with Python using the astropy.io.fits module,9

and convert it to a raw binary file that can easily be
read from any language, such as C# used by Unity.
This makes an extra step in the visualization process,
although this has to be done only once per data cube.
Inside Unity, the data is loaded in memory as a 3D

texture. Textures are common tools of 3D designers, al-
though 2D textures are far more common. 2D textures
are used to draw the surface of 3D objects to give them a
more realistic look. To handle three-dimensional data,
a possible approach is to generate an atlas of 2D tex-
tures (see Taylor 2015 for an application to astronomy
using the Blender rendering software); we find it simpler
to use a single 3D texture. For our purpose, we are es-
sentially using the texture as a look-up table, that gives
the emissivity value as a function of the three coordi-
nates. The 3D texture has to be defined in code, but
can be saved as a Unity asset and so be re-used. Al-
though floating-point texture formats exist, this is not
supported by Unity for 3D textures, so we downsize the
data to an 8-bit format – this resolution is sufficient for
the purpose of visualization, although we note that to
enable quantitative data extraction some link will need
to be kept with the original data. The texture can be
assigned as a property of a shader, a specialized program
that runs on the GPU in parallel and that “paints” the
pixels on the screen.10 The shader itself, in the Unity
terminology, gets assigned to a material that gets ap-
plied to an object in the scene.

Volume rendering: ray casting in the data cube— Since
we want to see the entire data cube, we are performing
volume rendering. To do this, we use the most direct
method, of ray casting: for each pixel to be rendered
on the screen, a ray is cast along the current line of
sight, and along this ray the data is retrieved at regu-
larly spaced intervals. The values are accumulated along
the line of sight using the standard radiative transfer ap-
proximation: the value at a point (understood here as a
voxel) is interpreted as both an emissivity (added to the
R, G, B channels) and an opacity (using the alpha chan-
nel to handle transparency). A key point here is that
the data appears to be “glowing” on its own – there is
no ambient lighting. This is useful because we are look-
ing at a loosely defined object amongst the background

9 Astropy is a community-developed core Python package for
Astronomy (2013).

10 In Unity shaders are created using the ShaderLab syntax,
and are essentially wrappers around code snippets in standard
HLSL/Cg shading language. They are compiled to whatever tar-
get is appropriate in the current environment (e.g. DirectX on
Windows or OpenGL on macOS).

noise, not at a pre-defined geometrical shape.
Volume rendering is notoriously demanding in terms

of processing power. For maximum efficiency, it is done
on the GPU, using custom shaders. Our first implemen-
tation was based on the algorithm presented by Kruger
and Westermann (2003) and re-used parts of an existing
Unity demo project by Brian Su.11 This algorithm offers
a straightforward way to compute all the ray directions,
but it requires three shader passes, which in Unity re-
quires the use of render textures, that apply to the entire
screen rather than a single object, and this did not carry
well to the stereoscopic mode. Our second, current im-
plementation uses a single shader adapted from a demo
by NVIDIA.12 A demo of our approach is publicly avail-
able.13 So the data cube really is just a simple cube
in the scene, that gets “filled” by the shader using the
3D texture. The texture is sampled at the location of
any voxel where a data value is needed. Note that the
“cube” can actually be of any size, and of any aspect
ratio (we commonly choose 1:1:1 for better visibility),
whatever interpolation is needed in the texture will be
done automatically on the GPU.
The display needs to be refreshed continuously as the

cube is being manipulated, with our current hardware
(that is a few years old) we obtain usable frame rates as
long as we limit the number of iterations on the GPU
(steps along the ray) to about a hundred – so that the
data cube is over-sampled along the velocity dimension
but under-sampled along the spatial dimensions.
Other techniques are possible for performing volume

rendering, that allow for a better performance at the
expense of quality, such as stacking planes, where one
draws a set of planes that stay perpendicular to the cur-
rent view and sample the data on each, or splatting vox-
els, where one cuts the data cube into textured polygons
that are projected onto the screen. We leave the inves-
tigation of these optimizations for future work.

4. PERSPECTIVES

The general aim of this exploratory project is not to
produce –yet another– visualization package, but to get
a workbench that allows us to experiment with the as-
pects that we feel are important for our data, in partic-
ular getting a proper colouring scheme, and overlaying
other data.

11 https://community.unity.com/t5/Life-of-a-Unity-Game/
3D-Volume-Rendering-using-Raymarching-Demo/td-p/846397
and https://github.com/brianasu/unity-ray-marching/tree/
volumetric-textures

12 We used the “Render to 3D Texture” code sample from
the OpenGL SDK 10, available at http://developer.download.
nvidia.com/SDK/10/opengl/samples.html.

13 https://github.com/gillesferrand/Unity-RayTracing.

https://community.unity.com/t5/Life-of-a-Unity-Game/3D-Volume-Rendering-using-Raymarching-Demo/td-p/846397
https://community.unity.com/t5/Life-of-a-Unity-Game/3D-Volume-Rendering-using-Raymarching-Demo/td-p/846397
https://github.com/brianasu/unity-ray-marching/tree/volumetric-textures
https://github.com/brianasu/unity-ray-marching/tree/volumetric-textures
http://developer.download.nvidia.com/SDK/10/opengl/samples.html
http://developer.download.nvidia.com/SDK/10/opengl/samples.html
https://github.com/gillesferrand/Unity-RayTracing


5

Colour transfer functions— When doing volume render-
ing, the part that makes the data reveal itself is the
colour transfer function, that defines the colour of any
data point (a voxel in 3D) as a function of parameters
such as the intensity of the emission at this point, or
the local velocity or spatial coordinates, or combination
thereof. The colour can be computed using a formula or
looked up in a table (that can again be stored as a tex-
ture in memory). For performance reasons it should be
specified in machine space (RGB), although it would be
more sensible to define it in perceptual space, in terms
of lightness value, hue, and chroma (see e.g. Wijffelaars
et al. 2008; Zeileis et al. 2009). Note that the colours
actually seen will be altered by the integration along the
line of sight, depending on the user’s viewpoint. Getting
the colour palette right for a given visualization can be
a delicate task, and we want the user to be able to dy-
namically adjust the mappings.
The most straightforward thing to do, always recom-

mended for a start, is to use a grayscale to show the emis-
sion intensity. Mapping the intensity value to colours
may not always add much to the visualization; defin-
ing physically-motivated transfer functions will often re-
quire a simultaneous display of the data histogram. We
find it more interesting to use colour (and specifically
the hue) to code the coordinates, in particular the ve-
locity coordinate since it is different from the other two
(spatial) coordinates. The most obvious choice is to use
a diverging blue vs. red palette to show the blue-shifted
vs. red-shifted parts of the galaxy. However it is all
too easy to pick a red that will pop out in the eye of
the viewer, creating a perception opposite to what is
physically happening. It is possible to tweak the colours
so that “blue comes forward” and “red goes back” as it
should, by adjusting the relevant colour contrasts. One
of the authors, Prof. Jayanne English, uses such visual
art techniques to clarify and support the information
(see e.g. English et al. 2003 for an application).
In immersive 3D, this discussion takes a whole new

turn, because we immediately and unavoidably perceive
different parts of the data cube at different depths – it is
actually difficult not to think of the 3D shape displayed
as the actual spatial shape of the galaxy! We want to
investigate in more detail the most relevant use of colour
in different environments, from 2D to 3D to VR.

Natural interaction with a data cube— Visualizing a data
cube in immersive 3D opens new possibilities, but also
creates new challenges in terms of user interaction.
A first example is the use of a 3D cursor to make se-

lections. On the desktop this is always cumbersome,
and commonly requires multiple steps and adjustments
of the view to get the location right. In VR, one can use
an actual 3D pointer, that can be one’s finger, or a tool

like a wand or stylus, as long as it is being tracked inside
the volumetric display. This has many possible applica-
tions, like: display the coordinates and data value of a
point, select all the points having the same value (live
iso-contouring), or show where this point falls on the
histogram (using multiple linked views).
Another useful example is to overlay other data. Since

at other wavelengths (such as optical) data are obtained
in the form of images, there is a need to overlay 2D data
on top of the 3D data, as floating panels. One could then
step the image through the cube (along the velocity axis)
to find matching features, and segment the image and
attach the segments where such matching features are
seen, in order to disentangle the different parts of the
galaxy. This can be done on the desktop by stepping
through the velocity channels, but in real 3D one can
easily look at any angle, and see for instance contigu-
ous features along the velocity axis (without having to
remember and reconstruct them mentally). Since radio
observations may be done at different wavelengths cor-
responding to different emission lines (e.g. from HI and
CO), another possibility is to superpose two (or more)
3D data cubes. This is also relevant for optical/UV
data obtained with Integral Field Units, for other ob-
jects like planetary nebulae or supernova remnants. The
data would be merged voxel by voxel, just like when cre-
ating 2D image “composites” from data obtained with
different filters or instruments, only in a more complex
way because of the view-dependent aspect.
Comparing figures 1 and 2, it is apparent that our

current prototype is in the realm of qualitative rather
than quantitative analysis. To make it a useful tool for
science, we want to eventually include all the steps of
the discovery process: explore, explain, extract. One of
the authors, Prof. Pourang Irani, is devising new ways
of interacting with data (e.g. Ens et al. 2014), and we
plan to integrate the knowledge of the Human-Computer
Interaction field to produce intuitive visualization tools
and techniques that people will actually want to use for
their research.

Conclusion and an invitation— The first feedback that
we have gathered, amongst members of our astronomy
group at the University of Manitoba, and during the
2016 Annual General Meeting of the Canadian Astro-
nomical Society (CASCA), was positive.14 Most people
were impressed by the technology, in part because
nearly all of them were experiencing it for the first time
– with this work we want to raise awareness about 3D

14 This paper serves as the proceedings of the presenta-
tion that the first author gave at this meeting, the slides
are available at http://www.physics.umanitoba.ca/~gferrand/
docs/FERRAND_2016-06-01_CASCA-talk.pdf.

http://www.physics.umanitoba.ca/~gferrand/docs/FERRAND_2016-06-01_CASCA-talk.pdf
http://www.physics.umanitoba.ca/~gferrand/docs/FERRAND_2016-06-01_CASCA-talk.pdf


6

displays, amongst radio astronomers in particular and
in the astronomy community at large. We hope to build
a special interest group, to keep moving forward and
share experiences about best practices as well as caveats
in this new, exciting area of scientific visualization.

This pilot project was funded at the University
of Manitoba by the Faculty of Science’s Interdisci-
plinary/New Directions Research Collaboration Initia-
tion Grants and by the University Collaborative Re-
search Program (UCRP). G.F. warmly thanks the HCI
lab team for hosting him during this work.

REFERENCES

D. G. Barnes, C. J. Fluke, P. D. Bourke, and O. T. Parry. An
advanced, three-dimensional plotting library for astronomy.
PASA, 23:82–93, July 2006. doi:10.1071/AS06009. URL
http://dx.doi.org/10.1071/AS06009.

A. Cioc, S. G. Djorgovski, C. Donalek, E. Lawler, F. Sauer, and
G. Longo. Data visualization using immersive virtual reality
tools. In American Astronomical Society Meeting Abstracts
#221, volume 221 of American Astronomical Society Meeting
Abstracts, page 240.20, January 2013. URL
http://adsabs.harvard.edu/abs/2013AAS...22124020C.

Astropy Collaboration, T. P. Robitaille, E. J. Tollerud,
P. Greenfield, M. Droettboom, E. Bray, T. Aldcroft, M. Davis,
A. Ginsburg, A. M. Price-Whelan, W. E. Kerzendorf,
A. Conley, N. Crighton, K. Barbary, D. Muna, H. Ferguson,
F. Grollier, M. M. Parikh, P. H. Nair, H. M. Unther, C. Deil,
J. Woillez, S. Conseil, R. Kramer, J. E. H. Turner, L. Singer,
R. Fox, B. A. Weaver, V. Zabalza, Z. I. Edwards,
K. Azalee Bostroem, D. J. Burke, A. R. Casey, S. M.
Crawford, N. Dencheva, J. Ely, T. Jenness, K. Labrie, P. L.
Lim, F. Pierfederici, A. Pontzen, A. Ptak, B. Refsdal,
M. Servillat, and O. Streicher. Astropy: A community python
package for astronomy. A&A, 558:A33, October 2013.
doi:10.1051/0004-6361/201322068. URL
http://dx.doi.org/10.1051/0004-6361/201322068.

J. English, R. P. Norris, K. C. Freeman, and R. S. Booth. Ngc
3256: Kinematic anatomy of a merger. AJ, 125:1134–1149,
March 2003. doi:10.1086/367914. URL
http://dx.doi.org/10.1086/367914.

Barrett Ens, Juan David Hincapié-Ramos, and Pourang Irani.
Ethereal planes: A design framework for 2d information space
in 3d mixed reality environments. In Proceedings of the 2Nd
ACM Symposium on Spatial User Interaction, SUI ’14, pages
2–12, New York, NY, USA, 2014. ACM. ISBN
978-1-4503-2820-3. doi:10.1145/2659766.2659769. URL
http://doi.acm.org/10.1145/2659766.2659769.

C. J. Fluke and D. G. Barnes. The ultimate display. ArXiv
e-prints, January 2016. URL
http://adsabs.harvard.edu/abs/2016arXiv160103459F.

A. Hassan and C. J. Fluke. Scientific visualization in astronomy:
Towards the petascale astronomy era. PASA, 28:150–170,
June 2011. doi:10.1071/AS10031. URL
http://dx.doi.org/10.1071/AS10031.

A. H. Hassan, C. J. Fluke, and D. G. Barnes. Interactive
visualization of the largest radioastronomy cubes. NewA, 16:
100–109, February 2011. doi:10.1016/j.newast.2010.07.009.
URL http://dx.doi.org/10.1016/j.newast.2010.07.009.

J. Kruger and R. Westermann. Acceleration techniques for
gpu-based volume rendering. In Visualization, 2003. VIS
2003. IEEE, pages 287–292, Oct 2003.
doi:10.1109/VISUAL.2003.1250384. URL
http://dx.doi.org/10.1109/VISUAL.2003.1250384.

R. P. Norris. The challenge of astronomical visualisation. In
D. R. Crabtree, R. J. Hanisch, and J. Barnes, editors,
Astronomical Data Analysis Software and Systems III,
volume 61 of Astronomical Society of the Pacific Conference
Series, page 51, 1994. URL
http://adsabs.harvard.edu/abs/1994ASPC...61...51N.

D. Punzo, J. M. van der Hulst, J. B. T. M. Roerdink, T. A.
Oosterloo, M. Ramatsoku, and M. A. W. Verheijen. The role
of 3-d interactive visualization in blind surveys of hi in
galaxies. Astronomy and Computing, 12, September 2015.
URL http://adsabs.harvard.edu/abs/2015arXiv150506976P.

E. Rosolowsky, J. Kern, P. Federl, J. Jacobs, S. Loveland,
J. Taylor, G. Sivakoff, and R. Taylor. The cube analysis and
rendering tool for astronomy. In A. R. Taylor and
E. Rosolowsky, editors, Astronomical Data Analysis Software
an Systems XXIV (ADASS XXIV), volume 495 of
Astronomical Society of the Pacific Conference Series, page
121, September 2015. URL http:
//aspbooks.org/custom/publications/paper/495-0121.html.

R. Taylor. Frelled: A realtime volumetric data viewer for
astronomers. Astronomy and Computing, 13:67–79, November
2015. doi:10.1016/j.ascom.2015.10.002. URL
http://dx.doi.org/10.1016/j.ascom.2015.10.002.

Martijn Wijffelaars, Roel Vliegen, Jarke J. Van Wijk, and
Erik-Jan Van Der Linden. Generating color palettes using
intuitive parameters. Computer Graphics Forum, 27(3):
743–750, 2008. ISSN 1467-8659.
doi:10.1111/j.1467-8659.2008.01203.x. URL
http://dx.doi.org/10.1111/j.1467-8659.2008.01203.x.

Achim Zeileis, Kurt Hornik, and Paul Murrell. Escaping
rgbland: Selecting colors for statistical graphics.
Computational Statistics & Data Analysis, 53:3259–3270,
2009. URL http://epub.wu.ac.at/1692/.

http://dx.doi.org/10.1071/AS06009
http://dx.doi.org/10.1071/AS06009
http://adsabs.harvard.edu/abs/2013AAS...22124020C
http://dx.doi.org/10.1051/0004-6361/201322068
http://dx.doi.org/10.1051/0004-6361/201322068
http://dx.doi.org/10.1086/367914
http://dx.doi.org/10.1086/367914
http://dx.doi.org/10.1145/2659766.2659769
http://doi.acm.org/10.1145/2659766.2659769
http://adsabs.harvard.edu/abs/2016arXiv160103459F
http://dx.doi.org/10.1071/AS10031
http://dx.doi.org/10.1071/AS10031
http://dx.doi.org/10.1016/j.newast.2010.07.009
http://dx.doi.org/10.1016/j.newast.2010.07.009
http://dx.doi.org/10.1109/VISUAL.2003.1250384
http://dx.doi.org/10.1109/VISUAL.2003.1250384
http://adsabs.harvard.edu/abs/1994ASPC...61...51N
http://adsabs.harvard.edu/abs/2015arXiv150506976P
http://aspbooks.org/custom/publications/paper/495-0121.html
http://aspbooks.org/custom/publications/paper/495-0121.html
http://dx.doi.org/10.1016/j.ascom.2015.10.002
http://dx.doi.org/10.1016/j.ascom.2015.10.002
http://dx.doi.org/10.1111/j.1467-8659.2008.01203.x
http://dx.doi.org/10.1111/j.1467-8659.2008.01203.x
http://epub.wu.ac.at/1692/


7

Figure 1. Screenshot of a typical radio-astronomer’s desktop on a personal computer. The program kpvslice from the Karma
software suite is being used. The window on the left shows the moment 0 map of the data cube, that is a projection along the
velocity channels, where one can see the galaxy’s physical outline. The window on the right shows a position-velocity diagram
made along the spatial axis shown as the green line on left plot, where one can see the rotation curve of the galaxy (uncorrected
for its inclination to the plane of the sky).

Figure 2. Photograph showing the lead author inspecting the galaxy data cube with a visitor in the CAVE. The two images
visible on the screen are merged into a 3D view thanks to the polarized glasses. Also note the reflectors that allow to track the
gaze of the person looking at the data, and the wand used to interact with it. For the two persons the data cube appears as
a 3D cloud floating in the air, the pointed finger is actually “touching” the edge of the galaxy – no photograph can convey the
actual experience.



8

Figure 3. Schematic illustrating how we use the Unity software to drive the different hardware components that make the
CAVE an immersive environment. We take advantage of the visual development interface and the software abstraction layers
to design the user experience.


